
 C-Family 1 Preface & Index

A Complete Material on C-Language Programming

This book softcopy is available in pdfhost.io website, to download the file, search through keyword

‘cfamily’, along with this book, you get 500 exercise programs list on C,C++, Java programming.

This pdf file(s) designed for 2-sided print-copy (Xerox copy).

I request you to rate the C-Family on Google review.

 C-Family 2 Preface & Index

 Chapter Index Page No

Number Systems

Decimal to binary 5

Binary to decimal 6

Sample programs 11

Introduction to C 13

history of C, evolution of languages 13

features of C language 14

assembler, compiler, interpreter 15

keywords, tokens, data types, expressions 17

Operators 19

garbage values, comment lines 23

Introduction to Programming 23

library-functions, user-functions, proto-type of function 23

about main() 23

first C program 24

compiling and running a program 25

escape sequence characters 32

type casting 35

representation of constants in C 36

flow chart, algorithm, pseudo code 38

Decision Control Structures 43

if, if-else 43-47

nested-if 52

If-else-if ladder 56

If-else linking, about Boolean value, null instruction 60, 62, 69

switch statement, conditional operator, goto statement 70, 77

Looping Control Structures 80

while loop 80

for loop 107

do-while loop 110

break, continue 111

nested loop 114

One Dimensional Arrays 123

accessing & initialization of arrays 123

about array size , array boundaries 130

 C-Family 3 Preface & Index

Functions 134

types of functions, library functions, user functions 134,135

function body & its call syntax 143

more about functions 145

Pointers 155

operators in pointers 155

arrays & pointers, passing array to function 159,160

call-by-value vs call-by-reference 172

Sorting & Searching 175

Storage Classes 182

Preprocessor Directives 189

2D Arrays 195

Characters & Strings 204-208

initialization of strings 209

pointer to string, passing array to function 225, 227

array of strings 228

Recursion 230

Dynamic Memory Allocation 247

Command Line Arguments 248

User Defined Data types 252

structures, array of structures 253 253

different declaration structures, typedef, advantages of structures 253, 254

union, enumeration 258, 267

File Handling 268

text files, binary files 269

IO operations on files 270

 C-Family 4 Preface & Index

C by Examples
A complete reference material on C-language programming

About C
C-language is an ideal programming language and a perfect combination of power and flexibility. Though

it is a high-level language, it has low level features as well as easy interaction with hardware and OS. Even

assembly language code can be mixed in it. It is accepted as a good system programming language.

Powerful OS like UNIX was developed using C.

‘C’ is widely used in the software industry for both system and application side development. C is the

primary subject in computer science. It lays good foundation in programming and eases the learning of

any advanced courses that are to follow. So, it has been added in every branch of arts, science, and

engineering as part of curriculum. Every graduate student is going to face C, C++, DS, Java, Python and

Oracle in the first & second academic years.

About C-Family Computers
C-Family is a premier institute in Vijayawada training the students in C, C++, DS, Java, Python, Oracle,

WebDesign courses since 1999. C-family was not setup by any business men instead it was setup and

run by a group of eminent programmers. We provide hands on training to ambitious students in right

proportions to their passion for knowledge. Needless to say, taking individual care of each student is

the hallmark of our institution. Our courses are designed in such a way that student get best

foundation in logic and programming skills. [The languages C, C++, VC, VC++, JAVA are called C-Family

Languages, as we teach all these courses, we named this institute C-Family Computer Education]

I am grateful to all the students, friends, staff who helped me making this material. This book is

advisable to learn the logic and programming skills for beginners. For any suggestions contact me on

srihari.vijayawada@gmail.com

 by Srihari Bezawada

since 1999

C-Family Computer Education,

#40-9/1-26, Vasayva Complex,

Dr. Samaram Hospital Lane,

Benz Circle, Vijayawada-10,

9440-030405, 8500-117118.

mailto:srihari.vijayawada@gmail.com

 C-Family 5 Computer Basics

Number systems and its conversion
We have mainly 4 number systems in the computer science.

1. Decimal Number System

2. Binary Number System

3. Octal Number System

4. Hexadecimal Number System

Decimal to Binary Conversion

The word decimal means 10, the base of decimal system is 10, here we have symbols 0, 1, 2, …9.

The word binary means 2, the base of binary system is 2, here we have symbols 0,1.

We know, computers follow binary number system, where, it manages the data and instructions in the form

of binary numbers (0/1), and this binary numbers managed as two voltages, for example 5volts for 0, and

12volts for 1. So, computers follow binary system for storing the data and also for processing the data.

We know, humans follow decimal system, and this system is also used by the computer while showing data

in visible form on the screen and printer. It uses graphical conversion to show binary values in decimal/text

format (pixels/dots).

Following example shows how to convert decimal number 13 into its binary form.

Continuously divide 13 with 2 and collect the quotients and remainders, the collection of remainder forms a

binary number, this is as given below.

Thus collection of these remainders from bottom-to-top forms a binary number (1310  11012)

Binary to Decimal Conversion

Multiply all digits(bits) of N with 20,21,22,23,24… from right-to-left, the sum of all such products forms a

decimal number. Following example explains how to convert binary number 1101 to its decimal 13.

Example2: converting binary number 11001 to its decimal 25.

13



 Remainders

 

13 / 2  1

 6 / 2  0

 3 / 2  1

 1 / 2  1

 0

1 1 0 1  1*23 + 1*22 + 0*21 + 1*20  13

23 22 21 20 8 + 4 + 0 + 1

1 1 0 0 1  1*24 + 1*23 + 0*22 + 0*22 + 1*20  25

24 23 22 21 20 16 + 8 + 0 + 0 + 1

 C-Family 6 Computer Basics

Hexa decimal System: The base of this system is 16, and we have 16 symbols from 0 to 15, the

symbols are 0,1,2,3,….9,A,B,C,D,E,F (10A, 11B, 12C, 13D, 14E, 15F).

This system mainly used to represent binary number in simple readable form of digits & alphabets.

As we know, binary system is very difficult to follow, because everything is in 1 or 0. So we represent binary

numbers in hexadecimal system for simplicity. Actually, Hexadecimal system resembles the binary values.

Here we divide a binary number into 4-bit groups, where each group contains exactly 4bits and each group is

represented in hexadecimal value. Let us take a sample binary number: 1101100111000011

This binary value is divided in 4-bit as 1101-1001-1100-0011, and is taken in hexadecimal system as D9C3.

Memory Measurements
Memory constituted in the form of bytes, where each byte consists of 8bits and the measurements are

 1 bit = 1 cell  the single bit or cell can hold either 1/0

 8 bits = 1 byte

 1024 bytes = 1 kilo byte (1kb)

 1024 kilo bytes = 1 mega byte (1mb)

 1024 mega bytes = 1 giga byte (1gb)

 1024 giga bytes = 1 tera byte (1tb)

 1024 tera bytes = 1 peta byte (1pb)

eg1) The binary value 1101 is stored in a byte as (remember, 1 byte = 8 bits)

The computer automatically adds zeros in front of 1101, this is like 00001101.

eg2) The binary value 1001101 is stored in a byte as

Overflow error: we can’t store more than 8bit value in 1byte memory, it causes over-flow error.

Here leftmost bits are omitted (truncated). eg: If we store 12bit value like 1100-1101-1001 in 1byte, then it

holds only right most 8-bits 1101-1001 and the left most 4-bits 1100 are truncated.

In Binary 1101 1001 1100 0011

    

 13 9 12 3

    

In Hexadecimal D 9 C 3

0 0 0 0 1 1 0 1

8
th

 bit 7
th

 bit 6
th

 bit 5
th

 bit 4
th

 bit 3
rd

 bit 2
nd

 bit 1
st

 bit

0 1 0 0 1 1 0 1

8
th

 bit 7
th

 bit 6
th

 bit 5
th

 bit 4
th

 bit 3
rd

 bit 2
nd

 bit 1
st

 bit

 C-Family 7 Computer Basics

Memory and its Min and Max value capacity

Some people raise a doubt about how the binary value 1111 is equal to 24-1, we already know how to

convert binary value to decimal, so by converting 1111 into decimal, we get 24-1.

Let’s see 1*23 + 1*22 + 1*21 + 1*20
 23 + 22 +21 + 20

 24-1

Again we may get a doubt, how 23 + 22 +21 + 20 is equal to 24-1. Following math analysis clears it

 Let X = 20 +21+22+23

 X = 20 +21+22+23 +24 - 24
//

after adding and subtracting 2

4
 to this X

 X = 20 + (21+22+23 +24) - 24
// taking 2 as common

 X = 20 + 2(20+21+22+23) - 24

 X = 20 + 2(X) - 24
// since X = 2

0
 +2

1
+2

2
+2

3

 X = 1+2X-24  X=24-1

So in 8 bits (1 byte) memory, we can store a value in range 0 to 28-1 (0 to 255),

 in 16 bits (2 byte) memory, we can store value 0 in range to 216-1 (0 to 65,535).

Representing –ve values
For signed types, the leftmost bit is used to represent sign (+ve/-ve). This bit is called sign bit, If this bit

contained 0 then it is said to be +ve sign value, or else –ve sign value, For example,

the value +13(1101) is stored in one byte as

The value -13 is stored as

Note: This kind of value representation is called “signed magnitude representation”.

So in 8bits (1+7 bits) memory, we can store value in the range of -27 to +27-1 (-128 to 127).

Actually, for negative values 2’s complement method is used, here extra +1 is added to the given number,

so we get -128 instead 127 in negative side. (in next topic, we will see what 2’s is Complement)

9 9 9 9 This value 9999 is equal to 10
4

-1 in decimal system

This is maximum value that can be stored in 4bits of decimal system 4
th

 bit 3
rd

 bit 2
nd

 bit 1
st

 bit

1 1 1 1 This value 1111 is equal to 2
4
-1 in binary system

This is maximum value that can be stored in 4bits of binary system 4
th

 bit 3
rd

 bit 2
nd

 bit 1
st

 bit

1 1 1 1  1*23 + 1*22 + 1*21 + 1*20  24 -1 15

23 22 21 20 8 + 4 + 1 + 1

+ve sign

0 0 0 0 1 1 0 1

8
th

 bit 7
th

 bit 6
th

 bit 5
th

 bit 4
th

 bit 3
rd

 bit 2
nd

 bit 1
st

 bit

-ve sign

1 0 0 0 1 1 0 1

8
th

 bit 7
th

bit 6
th

 bit 5
th

 bit 4
th

 bit 3
rd

 bit 2
nd

 bit 1
st

 bit

 C-Family 8 Computer Basics

Binary addition

Binary subtraction
In computer, subtraction is done like addition using 2’s complement method, this is truly simple and fast.

The normal subtraction of two values takes much time; here we may need to check & barrow from next

digits. For example, subtraction of 3456 - 0999. Here first, we try to subtract last digits 6-9, but here 6<9,

so we need to barrow from next digits. In this way, we have to look-up and barrow from next position digits.

This process takes much time and complex. The best solution is, 2’s complement method.

2’s complement is  1’s complement + 1

1’s complement is  reverse of a given number (replace 1 by 0, and 0 by 1)

that is, 1’s complement of 1 is 0, 1’s complement of 0 is 1

If X=1001, then 1’s complement of X is 0110

If X=0001, then 1’s complement of X is 1110

2’s complement is  1’s complement + 1

If X=1001, then 2’s complement of X is 0110+1  0111

Procedure for subtraction using 2’s complement method.

 1. Let X,Y are two values

 2. Let Y is small

 3. find 2’s Complement of Y

 4. Now add X + 2’s Complement of Y

 5. In the result of addition, remove leftmost bit

 6. Hence we get subtracted value. (note: if X<Y then add –ve sign to the result)

 1. Let X=1101 (13), Y=1001(9)

 2. The 2’s complement of Y is 0110+1  0111

 3. Addition of 1101 + 0111  10100 (this is addition of X + 2’s Complement of Y)

 4. Remove left most bit from 10100, then it is  0100 (this is the output)

 5. The result of X-Y is 0100 (4)

 6. This logic works for all binary values.

 7. This is truly faster than traditional method.

* people often say, 2’s complement values are -ve form values of given values.

Addition of binary values

X  0 0 1 1

Y  0 1 0 1

X+Y  0 1 1 10

When we add 1+1  we get sum as 0, and carry as 1, so result is 10

don’t call this result as ten, call it as one - zero.

X 1

Y 1

Z 1

X+Y+Z 1 1

carry 1 1

X 1 1 0 1

Y 1 1 1 0

X+Y 1 1 0 1 1

Carry 1 1 1 1

X 1 1 0 1

Y 1 1 1 1

X+Y 1 1 1 1 0

 C-Family 9 Computer Basics

What is instruction, statement and program?
Instruction is a command, that is given to the computer processor to perform certain elementary task.

For example, consider a simple addition instruction 10+20, when this instruction executes, we get 30.

Statement is a meaningful combination of one or more instructions that solves a complex task.

For example, consider calculating area of a circle “area=22/7*radius*radius“

Program is an organized collection of such related instructions/statements to solve a specified problem.

Software can be defined as collection of one or more programs.

The programs look like the following example; this calculates the sum of two numbers

 step1. input(a,b)

 step2. c=a+b

 step3. print(c)

What is Programming Language?
Language means communication between two people; likewise, programming language is a communication

between user and the computer. The user communicates with the computer by giving instructions to it, the

instructions are written based on the language’s syntax structure provided by the language manufactures.

We have several languages such as Fortran, Pascal, COBOL, C, etc; out of all, C is a rich, simple, elegant,

powerful, and structured language. Now a day’s C became primer language for advanced languages like C++,

Java, C#, VC, VC++, as they all adopted C syntax. All these languages are also called C-Family languages.

Evolution of languages
We have three types of languages 1.machine language, 2.Assembly language, 3.high level language.

Programs are written using these languages.

A) Machine Language (binary/low level language)
It is treated as first generation language, used during development of computer in 19th century. In this

language, the data and instruction of programs were written in terms of binary symbols (1&0’s), even input

and output were given in binary codes, as the computer understands the instructions only in ones and zeros.

For example, the instruction 9+13 is in binary form like 0010 1001 1101. Here, the first 4 bits represents the

code of ‘+’ and remaining 8 bits are 9 & 13. This language is also called binary or low-level language. Actually,

this language is difficult to understand, remember and writing programs in binary codes, it leads to a lot of

typing mistakes, because everything is 1&0s. This problem led to the invention of assembly language.

B) Assembly Language

this is somewhat better than binary language. Here, symbolic names were provided for every binary codes

of machine language. The names such as add, sub, mul, div, cmp, etc. So, programmers can easily

understand and write instructions using these names instead of binary 1&0’s. For example adding 4 & 6 in

8088 assembly language as

 mov ax,4;

 mov bx,6;

 add ax,bx

However, the main drawback of assembly language is, a large set of instructions are needed to be written

for simple tasks like addition of two numbers. It supports only small programs if the code is <1000 lines,

otherwise difficult to manage the code. Moreover, assembly differs from one to another machine. Some

people consider Assembly language also a machine language since the assembly codes resembles the

machine codes.

 C-Family 10 Computer Basics

C) High Level Language
this is English and mathematical oriented language. Here data and instructions composed in terms of English

words and mathematical expressions. For example c=a+b, c=a-b , if(a<b), …etc. So one can easily learn and

apply high level language code. One can write the programs without the knowledge of computer hardware

and operating system, i.e, it hides(abstract) the underlying details about the instructions how they are being

processed in the machine. So, programmers can easily code without bothering about hardware and O.S. The

8085, 8086 are known as Assembly languages whereas C,C++, JAVA are high level languages.

What is Assembler & Compiler?
Neither assembly nor high-level language codes can be understood by the computer directly. Before

executing them on the processor, they have to be converted into processor understandable codes. The

assembler is a translation-software, which translates assembly language program codes into equivalent

processor understandable codes. Similarly, compiler translates high-level language code into equivalent

machine(processor) understandable codes. We have several operating systems and several C compilers. All

most all compilers follow the same rules except for a few modifications.

Brief History of C

In 1960’s, there was a need for general purpose programming language and the available ones were of

specific-purpose only. For example, COBOL was meant for business applications; similarly FORTRAN was

extremely small and suitable only for scientific applications. Instead of being small, simple and specific, the

CPL was intended to support wide range of applications in all sectors; thus, the demand for a general-

purpose language led to the invention of CPL (Combined Programming Language). However, its heavy

specific features made it difficult to program. Its drawbacks were eliminated, simplified and further

developed by Martin Richards and named as BCPL (Basic CPL). Still it had some complex & difficult features

of CPL and these difficulties were simplified by ken Thompson and named it as ‘B’.

Later while developing UNIX operating system in 1969, ken Thomson faced several problems with the B

language; here B was used for programming while making UNIX software. Dennis Ritchie modified the B

language to overcome its limitations to suit all needs and renamed it as C. Of course, the development of

UNIX using C language made it uniquely portable and improvable; Finally, C was released in 1972. Dennis

Ritchie is a research scientist at Bell Telephone Laboratories in U.S.A. Brian Kernighan also participated while

making the definitive description of the language. Therefore, the C is also referred as ‘K&R-C’.

Features of C-Language
A) C is a small & compact language: It has small number of keywords and symbols. Therefore, it provides

easy & compact programming. The size of software is also less compared to other language and it has good

library functions.

B) C is a high-level language with low-level features: Although C is technically a high-level language, it

has good syntax, features (pointer) and library functions to interact directly with hardware of the computer.

C linked closely with the machine, so one can directly access the components like hard disk drive, optical

drives, printers, operating system…etc; besides, it supports assembly language instructions within the C

program. That is, one can mix up assembly language instructions within the C program; hence it is well

suited for writing both system software and business packages.

 C-Family 11 Computer Basics

C) C is a structured programming language: Previously, the languages were influenced by

‘if’, ‘goto’, ‘repeat’, etc; writing code using such statements makes the program unreadable and complex.

If there are no ideal structural tools to force the programmer to write the code in uniform style then

everybody writes one’s own style and makes the program complex and un-readable to others. For example,

if there are no predefined traffic rules in city roads, everyone travels as per one’s convenience and makes

traffic disorders and cause inconvenience to others; so the traffic structures such as signals, dividers, zebra

lines and indicators force the traveler to follow rules in order not to cause confusion. Now, the word

structured means a predefined logical model (uniform syntax) and structured programming means, writing

instructions in a predefined structured manner, thereby every programmer writes instruction in uniform

style and made easy to understand by others.

Structured programming was first suggested by Corrado Bohm and Guiseppe Jacopini. The two

mathematicians demonstrated that any computer program can be written with just three structures:

sequence, decision, and looping. ie, the logic of any program can be expressed in terms of these structures.

A program of any complexity can be solved by the appropriate combinations (mixture) of these three basic

constructs. These structures are constructed with one entry and one exit style, so that one can easily

understand the execution flow of a program. Thus structured programming greatly reduces the complexity

of programs. So every structured language supports the following constructs

 decision controls statements (if statement)

 Case selection. (switch case)

 Looping. (while , for loops)

 Subroutine (functions/sub programs)

Subroutine: this is also called function or sub-program or procedure or method. This feature is to divide a

big program into several reusable segments called sub-programs, each with the all necessary data and

instructions to perform a certain task. Thus, this collection of sub-programs makes the entire program.

D) C is a portable language: The word portable means easy to carry or transfer, here the portability refers

to the ability of a program to run on different environments (hardware or operating systems).

As ‘C’ became powerful, it had provided different version of C-compilers for different operating systems.

A C-program written in one platform can be portable to any other platform with few/negligible

modifications. For example, a program written in UNIX operating system can be easily converted to run in

WINDOWS or DOS and vice versa.

E) C has flexible coding style: Unlike other languages (COBOL, FORTRAN), C provides a freedom to the

programmer while coding the program. We can write the code without bothering about the alignment of

instructions. The C compiler can recognize the code even when the program is not aligned or typed properly.

In other words, we can use more spaces, empty lines in between instructions (tokens), or we can type

several instructions in one line.

F) Widely Acceptable: It is suitable for both system and application side programming. It frees the

programmer from traditional programming limitations. It empowers the programmer to develop any kind of

applications. Thus, accepted by almost all users and became the most popular language in the world. In fact,

many of the software available in the market are written in C.

G) C is a case sensitive language: In C, an upper-case alphabet is never treated equal to the lower-case

alphabet and vice versa. All most all keywords and predefined routines of C languages use only lower-case

alphabets. Therefore, it is very simple to type in only one case. Of course, some user defined symbols

(identifiers) can be typed in upper case to identify them uniquely.

http://c2.com/cgi/wiki?SubRoutine

 C-Family 12 Computer Basics

Operating System
The term O.S refers to a set of programs that manages the resources of a computer. The resources of

computer include processor, main-memory, disks, and other devices such as keyboard, monitor, printer that

are connected to it. It also provides a good interface to the user. The interface provided by the O.S enables

the user to use the computer without knowing the details of the hardware. So, interface hides the

underlying working of a computer. The main jobs of O.S are memory management, process management,

disk management, I/O management, security, and providing interface to the user …etc.

Currently, the widely used operating systems are MS-DOS, UNIX, and WINDOWS. DOS is a simple operating

system largely used in PCs. Unix, Linux, Mac, Windows on the other hand used variety of computers such as

mainframes, servers, graphics workstations, supercomputers, and also in PCs.

When a user runs a program (app) in the computer, the operating system loads the program into main

memory (RAM) from the hard-disk, and then executes the instruction by instruction with the help of

processor. The processor can take & execute only one instruction at a time. So, this loading and executing

instructions is done under the control of OS. Thus, OS executes our programs with the help of hardware. OS

is the main responsible for all these things and also makes the computer in working for other tasks.

The relation between hardware, operating system, user-program, and user can simulate with a banking-

system such as bank, employee, transaction and customer. The hardware as a bank and O.S as a bank

employee, who works dedicatedly to organize all transactions of a bank, whereas the user as a customer and

user-program as a transaction, the user submits his program just by giving a command to the computer; the

responder, the O.S, takes up the program into main memory and process the instructions on the hardware

under its control. The following picture shows the layers of interaction between user and the computer.

C Character set
It is a set of symbols called characters, which are supported by the C-language. C supports all most all

symbols which are provided in the keyboard

 Lower case alphabets (a-z), Upper case alphabets (A-Z)

 Digits (0-9)

 White space (‘ ‘)

 Math symbols (+ , - , * , / , % < > = …etc)

 Special symbols like {} [] () ! & , “ \ …etc)

C Keywords
Like English language vocabulary, C has its own vocabulary called keywords; thus, Keyword is a reserved

word, which has specific meaning in C, and it cannot be used for other purpose, using these keywords, the

programs are constructed. C has the following standard set of 32 keywords.

if, else, switch, for, while, break, continue, goto, auto, register, extern, static, volatile, return, enum, void,

char, int, long, short, float, double, signed, unsigned, case, const, default, do, union, sizeof, typedef, struct;

Note: All keywords should be written in lower case. Depending on the compiler/vendor, few additional

keywords may also exist.

User Customer

User program Transaction

Operating system Bank employee

Computer hardware Bank

 C-Family 13 Computer Basics

Tokens
Let the expression ‘x+y’. It has three tokens ‘x’, ’y’ and ‘+’. Here x, y are called operands, and ‘+’ is called an

operator. The compiler splits all the instructions into individual tokens for checking syntax errors. Splitting

expression into tokens and checking is known as parsing.

Now token can be defined as an elementary item in the program, which is parsed by the compiler.

Token can be a keyword, operator, identifier, constant, or any other symbol; For example,

a+b // this expression has 3 tokens: a , b , +

a<=b // this has 3 tokens ‘a’, ‘b’, ‘<=’ (here ‘<=’ is a single token)

c++ // this has 2 tokens c , ++ (here ‘++’ is a single token)

if(a<b) // it has 6 tokens

note: in C, ‘+’ is different from ‘++’ , both are different operators.

 C-Family 14 Computer Basics

Classification of Data (Data types)
Data means a value or set of values that represent attributes like age, experience, address, salary, …etc.

for example, the data of employee can have like idno, name, age, experience, address, salary…etc.

The computer hardware (processor) designed to process only two types of data

1.integral (also called integer values)

2.floating point (also called real numbers or precisions)

The integral data are rounded values like 10, 20, -343, etc, whereas floating points are 15.44, -45.56, etc;

So, in the real world, any kind of data comes under these two types, for example, the employee number, age

are integral types. Whereas the basic salary & net salary are stored in floating point format.

The employee name, address are collection of alphabets and other symbols, these are also integer type

values. Because in computer, the alphabets are stored in its ASCII codes, for eg: ‘A’ as 65, ‘B’ as 66, ‘a’ as 97.

In C, these data are classified into nine types based on the application’s requirement and hardware support;

these are known as built-in or primitive or basic types.

signed int or unsigned int are system dependents, for example, in 16-bit DOS, it occupies 16 bits of memory,

whereas in 32-bit Unix/Windows, it occupies 32 bits of memory. So, they occupy 2/4 bytes based on system.

The keyword signed is an optional word for signed types. That means, even if we do not mention the

keyword ‘signed’, the compiler by default takes as signed types.

For example, the ‘int’ is equal to ‘signed int’ in the C-language.

int a, b, c;  is equal to  signed int a, b , c;

Type Bytes occupied Range

singed char 1 -128 to 127

unsigned char 1 0 to 255

signed int 2 -32768 to 32767

unsigned int 2 0 to 65,535

signed short int 2 -32768 to 32767

unsigned short int 2 0 to 65,535

signed long int 4 -2147483648 to 2147483647

unsigned long int 4 0 to 4294967295

Float 4 3.4 e-38 to 3.4 e+38

Double 8 1.7e-308 to 1.7e+308

long double 10 3.4 e-4932 to 3.4 e+4932

signed

char

 data

 Integral Floating point

10 byte

(long double)

8 byte

(double)

4 byte

(float)

4 byte

(long int)

2 byte

(int)
1 byte

(char)

unsigned

char
unsigned

int

signed

int
unsigned

long int

signed

long int

 C-Family 15 Computer Basics

Operators
Operator is a symbol or keyword used to compute mathematical or logical calculations in a program.

C provides rich set of operators for making flexible and simple expressions. Operators are classified primarily

into four categories: arithmetic, relational, logical, and bitwise. Assignment, referencing, de-referencing are

called special operators. Each operator comes under one of the following types.

 Unary Operators: These operators are associated with only one operand.

 Binary Operators: These operators are associated with two operands.

 Ternary Operators: These take three operands to perform an operation.

Note: just go through these operators briefly, we can learn in detailed in rest of the chapters.

A) Arithmetic operators (+ - * / %)
These operators are used to calculate arithmetical sums such as addition(+), subtraction(-), multiplication

(*), division(/) for quotient and modulus division(%) for remainder.

Let us see some of arithmetic expressions. Here a & b are operands

 a + b, a - b, a * b, a / b, a % b

Integer division gives only the integer part of the result, that is, the fraction part is truncated (ignored).

For example, the result of 15/2 is 7 (not 7.5). The floating point division gives fractions also (15.0/27.5)

The modulus-division gives the remainder of a division, for example 17%32. Notice that, we cannot apply

modulus-division on floating point values as the division goes on and on till the remainder becomes zero,

therefore, it is meaningless applying ‘%’ on float values. For example, the instruction 15.0%2.0 is an error.

 Unary Binary Ternary

Sign + ve sign , -ve sign

Arithmetic

++ (increment)

-- (decrement)

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo division

Relational

 < Less than

> Greater than

>= greater than equal to

<= less than or equal to

== equal to

!= not equal to

 ?:

Conditional

operator

Logical
! (NOT) && AND

|| OR

Bitwise

~ (1’s compliment)

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Right shifting

<< Left shifting

Assignment

 = Simple Assignment

+= Addition Assignment

-= Subtraction Assignment

/= Division Assignment

*= %= …etc

miscellaneous

sizeof

* (dereferencing)

& (Referencing)

. direct selection

-> Indirect selection

, expression separator

 C-Family 16 Computer Basics

Observe the result of following expressions

B) Relational operators

These operators are used to find the relation between two values. If relation is found to be true then the

result is 1, otherwise it is 0. (The result of this 1 & 0 values is said to be BOOLEAN values).

The operators such as: < > <= >= == !=

C) Logical Operators
These operators are used to combine two or more relations to form a single compound relation.

These operators also gives the result either 1 or 0 (Boolean value)

 &&  Logical AND operator

 ||  Logical OR operator

 !  Logical NOT operator

The operator ‘&&’ works just like the word ‘AND’ in English language.

The operator ‘||’ works just like the word ‘OR’ in English language.

 syntax1: relation1 && relation2  eg: if marks1>50 && marks2>50 then student is passed

 syntax2: relation1 || relation2  eg: if marks1<50 || marks2<50) then student is failed

 syntax3: ! relation  !true  false

1) When we want two or more relations to be true for one action then we use AND operator(&&),

 for example if A>B and A>C are true, then ‘A’ is said to be bigger than B,C.

 In C-lang, it is written as: if(A>B && A>C)

 here if both conditions A>B and A>C are satisfied, then the operator && gives the result 1 (true).

 If anyone of them is false, the result is 0 (false).

15/2  7 // decimal part is truncated, because 15 & 2 are integers

15.0/2  7.5 // because 15.0 is floating point

15.0/2.0  7.5

4/5  0

15%4  3 // remainder of division

4%6  4 // it goes zero times and gives remainder 4

-15%6  -3

10%-3  1 // in modulo division, sign of result is, sign of numerator

2.5%5  error

a > b // greater than comparison

a < b // less than comparison

a <= b // less than or equal comparison

a >= b // greater than or equal comparison

a == b // equality comparison

a != b // non equality comparison

Observe the result of relational operators

2 == 5  0

2 != 5  1

5 < 10  1

10 < 5  0

 C-Family 17 Computer Basics

2) When we want either of one relation to be true for one action, then we use OR operator(||),

 for example, If any marks1<35 or marks2<35 or marks3<35 are true, then student is “failed”.

 in C program, it is written as  if(marks1<35 || marks2<35 || marks3<35)

 if at least one relation is satisfied, the operator || gives the result true. If all are false, then result is false

The following truth table shows the result of logical operators

D) Assignment operator (=)
If you are new to the programming, you definitely misunderstand it as an “equal” comparison operator

which we use in mathematics. But in C, it is used differently to copy one location value to another location.

It is used to assign(copy) right hand side expression’s value to left hand side variable; i.e, it copies RHS

expression’s value to LHS variable;

 Syntax 1: variable=expression;

 Syntax 2: variable1 = variable2 = variable3 =... variableN = expression;

E) Arithmetic assignment operators (shortcut operators)
These shortcut operators are used when left hand side operand is repeated in right hand side at the

assignment. For example ‘salary = salary + 1000’, this can be taken in short form as ‘salary += 1000’

 The operators are: +=, -=, *=, /=, %= …… etc.

 A = A + 10;  A += 10

 B = B - 10;  A -= 10

 A = A * 200;  A *= 200

 A = A / 5  A /= 5

note: these short operators somewhat confusion, as a result discouraged in modern programming.

A B A &&B A||B !A

1 1 1 1 0

1 0 0 1 0

0 1 0 1 1

0 0 0 0 1

A = 10; //assigns 10 to ‘A’ (puts 10 in A’s memory)
A

10

B = A; //assigns ‘A’ value to ’B’, after this instruction both

 A , B contains same 10
B A

10 10

E=F=G=100; // assigns 100 to all E, F, G
E F G

100 100 100

C=A+B; // the sum of A+B value assigns to C

A+B=C; // error, not following syntax rules, c value cannot be assigned to A+B

10=A; // error, not following syntax rules, A value cannot be assigned 10

 C-Family 18 Computer Basics

F) Increment or decrement operators (++ , --)
in programming, it is often needed to increment/decrement variable values by 1.

for this, C provides a very important and versatile operators called ‘++’ and ‘--‘.

these are very famous operators and almost all languages following in computer science.

 ++ is an increment by one operator

 -- is a decrement by one operator

Let us take one example

 k=5; // sets 5 to k
 k++; // this instruction increments ‘k’ value by 1, so it becomes 6

 so this ‘k++’ is a short form of k=k+1

These two operators are again classified into pre & post increment/decrements

 1) ++k; // pre increment

 2) --k; // pre decrement

 3) k++; // post increment

 4) k--; // post decrement

Pre increment/decrement has highest priority than any other operator. Hence, this operator is evaluated

before any other operator, whereas post increment/decrement has lowest priority than any other operator.

Hence, this is evaluated after all other operators are evaluated; (for clarity sees the operator priority table)

Note: the parenthesis () has no effect on these operators. For example: 2*(A++) is equal to 2*A++;

Let us take some examples, Let A=5, B=10;

 1) A++; // this is equal to A=A+1; here ‘A’ becomes 6

 B--; // this is equal to B=B-1; here ‘B’ becomes 9

 2) B = ++A; // this is equal to given below, first pre-increment and then assignment

 ++A;

 B=A;
 result is: A gains 6, B also gains 6

 3) B = A++;  this is equal to given below, first assignment and then post-increment

 B=A;

 A++;
result is: B gains 5, A gains 6

 4) B = ++A + ++A + A++;  this is equal to given below, we have two pre-increments, and one post-increment)

 ++A; // pre increment, so do first (here ‘A’ becomes 6)

 ++A; // pre increment, so do first (here ‘A’ becomes 7 , this is increment of previous value 6)

 B=A + A + A; // add all values (B=7+7+7)

 A++; // post increment, so do last (here ‘A’ becomes 8)

 Result of A is 8 , B is 21

Note: So first do all pre increments, next process normal expressions, at last do all post increments.

5) B = A++*3 + ++A + 5*++A;  this is equal to given below

 ++A;

 ++A;

 B=A*3+A+5*A;

 A++;

 C-Family 19 Computer Basics

Note: in modern compilers, this ++ and – – has changed their working style.

* pre increment means: increment & substitute its value
* post increment means: substitute & increment its value

 let A=1; the observe following substitutions.

 B = ++A*2 + ++A*3 + A++*4 + A++*5 + ++A;

 2*2 + 3*3 + 3*4 + 4*5 + 6

G) sizeof():operator gives the size of memory which is occupied by the variable or constant or data type

 sizeof(int)  2

 sizeof(long int)  4

 sizeof(k)  2 // let k is int type variable
 sizeof(10)  2 // 10 is int type value

H) Comma operator(,): It is used to separate two or more instructions in the program. It is used in

several contexts in the programming. The actual behavior of comma operator is that, it returns the right

hand side operand value as the result of the expression.

 a=2, b=3, c=10; // Here comma works as separator

 c=a , b; // it is combination of two instructions “c=a and b”, but ‘b’ does nothing

 a = (b, c); // it is also a combination of two instructions, “b and a=c”

Operator precedence (like BODMAS rules in maths)
In general, complex expressions are formed with the combination of mathematical or logical operators.

While evaluating such expressions, initially the sub expressions are evaluated according to the precedence.

For example, the expression 5+2*4 evaluated as 5+813. Observe the following table showing the relative

precedence of operators in c. Just look once about this precedence, we can learn in detailed in next

chapters.

In the above table, Operators in the same row have the same precedence. Among same precedence

operators, the evaluation takes place from left-to-right side in the expression. Only the assignment & unary

operators are performed from right-to-left. For example a=b=c=d, here first c=d, and b=c , finally a=b;

Priority 1 () [] -> .

Priority 2 ! ~ +(sign) -(sign) ++ -- (pre incr/decr)

Priority 3 sizeof &(reference) *(de-reference)

Priority 4 * / %

Priority 5 + -

Priority 6 << >>

Priority 7 < <= > >=

Priority 8 == !=

Priority 9 ^ | & (ORing, ANDing)

Priority 10 && ||

Priority 11 ?: (conditional operator)

Priority 12 = *= /= %= += -= &=

Priority 13 ^= |= <<= >>=

Priority 14 Comma operator (,)

Priority 15 ++ -- (post increment/ decrement)

 C-Family 20 Computer Basics

How to write expressions in C
An expression is a systematic combination of operands and operators to specify the relation among the

values. However, any single constant, variable is also called an expression. For example,

 1+2 4*5 22/7 10%3 10>5 a a+b

 1==0 4<<1 55<=100 -10 10 b a<c

C language allows us to use complex expressions, wherein such expressions should be cautiously handled;

otherwise it leads to logical errors. Let us see, how an expression should be typed in correct syntax.

For example:

1. ax3 + bx2 + c x + d : Answer  a*x*x*x + b*x*x + c*x + d

2. -b+ √b2- 4ac : Answer  (-b+sqrt(b*b-4*a*c))/(2*a)

 2*a

3. ax45 + 6x5 : Answer (a*pow(x,45)+6*pow(x,5)/(c*x+7))

 cx+7

Here pow() and sqrt () are functions, finds power and square root of a given value.

Variable and its Naming rules
Program means collection of data and instructions, the data is represented in terms of names such as age,

experience, salary …etc; these names are called variables which refers/holds a value in the program.

Thus, variable is a name given to the memory location in computer main memory, where some values are

stored and retrieved; these values may vary during execution of program.

Rules for naming variables, while naming a variable, we should follow rules as explained below

 First letter must be an alphabet

 Only alphabets, digits and underscore are allowed in variable names

 We cannot use any other symbols like comma, hyphen, period…etc.

 Spaces are strictly not allowed.

 Should not be a keyword like ‘if’, ‘else’, ‘while’ …etc.

 The variable name can contain a maximum length of 32 characters.

some valid names Some invalid names

basic_salary

net_ salary

age

weight

name

marks1

basicSalary

for1

123pq // digits not allowed as first

ab,cd // comma not allowed

first-person // hyphen not allowed

i and j // spaces not allowed

int // keyword not allowed

units/month // other symbols not allowed

basic salary // space not allowed

 C-Family 21 Computer Basics

Declaration of variables
The declaration specifies name, size, type and other characteristics of a variable. Before using any variable,

it must be introduced to the compiler about the name, size and type of data it is going to hold.

 This introduction is called variable declaration; it involves creation of memory in the RAM and substitution

of logical address (binding) where ever it is used in the program.

Here in the syntax, the symbols “< >” represent user-defined and are compulsory, whereas square brackets

[] represent optional. [This is old style syntax, now a days nobody following this syntax]

The above syntax can be written as: dataType variable1, variable2, variable3…;

For example: int k1, k2=10;

This declaration creates 2 bytes of memory space for k1, k2 in RAM; Here k1 has not been assigned with any

value, so by default, it contains garbage value (un-known value), whereas K2 has been initialized with 10;

Let us see more examples:

int age, experience; // holds person age and experience

int year; // year of date

float salary; // salary of employee

Initialization vs assignment of variables
We can set a value to the variable at the time of declaration ie, at the time of creation of memory.

This is called initialization of variable. Assigning a value after declaration is said to be assignment.

 eg1: int K1=10; // this is called initialization, not an assignment, here k1 initialized with 10;

 eg2: int K2;

 K2=20; // this is not initialization, this is called assignment.

Note: here above 2 examples initialization & assignment affects the same result, we can follow either.

What is Garbage value?
At the time of declaration, if variable is not initialized with any value, then by default it holds an unknown

value called garbage value. This value may be +ve, or -ve or sometime zero.

After completion of execution of one program, the program’s binary code or data will not be cleaned

automatically from the memory by the O.S, it exists until the next program loads into the same memory;

when a new program loads into this same memory, the old program’s code & data gets overwritten

(replaced). But when just a space is allocated for our program variables, in this space, the previous

program’s binary values found or collected to these variables, which are anyway garbage to the new

program. This garbage exists until new values are assigned to these variables. For example,

 int X=100, Y; // here X contains 100, but Y contains garbage value.

Note: Some times, this garbage may belong to our current running program itself. When a function is

terminated, its variable’s space is freed and reallocated for next function’s variable. So, in this way the

garbage values come into picture.

K1 k2

Garbage value 10

2 bytes 2 bytes

Syntax: <data type> <variable1>, *<variable2>, <variable3> … <variable n>+;

 C-Family 22 Computer Basics

‘C’ comment line
Comment lines are simply a passage of meaningful text, to give a brief idea about author of program,

purpose of program, and other details. It is a good programming practice giving comments to increase the

readability of a program. Programmers always add comments at instructions wherever complexity is seen.

Thus, the logic of program can be understood by studying comments. We can write our comments anywhere

in the program by enclosing the comment text within a pair of /* …. */ This is as

 /* ……….. comment line 1 ……………

 ………… comment line 2 ……………

 ………… comment line 3 …………… */

for eg: /* this program is written by Srihari, dated on 10-7-2023

 this takes two input values and finds sum of them */

This comment lines are ignored (skipped) while compiling a program, and hence they are not executed.

Comments are not a part of the program, they are for documentation purpose. This is ‘C’ comment line and

can be used as single line or multi-line in the program.

C++ comment line: C++ supports single line comment, the syntax is

 // ……………………………..comment line…………………………………….

The C++ is a superset of C, hence, we can compile C programs on C++ compiler, hence, we can use C++

comment lines in C programs (of course i myself used this comments during explanation of things).

 C-Family 23 Computer Basics

Functions
In general speaking, in our real life, several people are required to accomplish one task with each one of

them doing one’s specialized sub task. Similar to this, a programmer cannot develop the entire code of one

application; instead many programmers contribute the code in terms of sub programs called functions.

Function is a sub-program that performs a given sub task in a program. Here each function is designed and

written for specific purpose such as calculating power, square root, logarithms …etc; thus collection of such

functions makes a C-program. For example, sqrt() is a function, it gives square root value. eg: sqrt(16)4

The functions are classified into ① library functions, ② user–defined functions

Library functions
These are ready-made functions, designed and written by the C manufactures to provide solutions for basic
and routine tasks in the programming. For example, the mathematical functions pow() & sqrt(), and I/O
functions scanf() & printf (),etc. The vendor of C, supply these predefined functions in compiled form with C
software.
There is huge collection of such compiled functions available in C, hence, these collections are called
functions Library. The library functions-body placed in separate files with name “xxxx.lib” in compiled format
and they are automatically linked to our program at the time of compilation, and these are hidden to the
programmer. (We will see about user-defined functions in functions chapter)

1) Math library functions

The familiar math functions are pow(), sqrt(), sin(), cos(), tan(), log(), log10(),etc.

1) pow(x,y) is a function calculates xy, where x is base and y is exponent.

 k=pow(2,3); // k=8; here 2
3
 is calculated and assigned to ‘k’

2) sqrt(x) is a function calculates square root of x.

 K=sqrt(16); // k=4;

3) log() is a function, finds the log2 value

The syntax of these functions are defined in ‘math.h’ file and any function is used in the program, it should

be included at the beginning of program as: #include<math.h>

2) Terminal I/O library functions

Generally, all programs are needed to interact with keyboard or monitor devices to accept and print values.

Input is taken from the keyboard and the output is displayed on the screen.

The printf() and scanf() are familiar I/O functions defined in ‘stdio.h’ file

printf(): displays message or output values on the screen, the programs are stored permanently in

secondary storage devices like hard disk and when they are gets executed, loaded from hard disk to RAM

and then instruction by instruction is executed by the processor. Here nothing will be displayed on the

screen while executing a program in the memory, if something wanted to be shown on the screen, we must

add an instruction called “printf()”, which displays data/message on the screen. For example

syntax: printf(“ some text with format-string ” , list of values to be shown);

the format strings are: %d , %f , %ld , %u , %c , %s , etc.

here format-string is a value injector for int, float, long, etc

here %d for int, %f for float, %ld for long-int etc.

inside program

printf(“hello”);

On the screen

 hello

 C-Family 24 Computer Basics

example: let A=10, B=20, C=30;

printf(“ %d %d ”, A , B);  on the screen we get: 10 , 20 [here %d is a substituter for int-value]

printf(“ A&B values are %d %d ”, A , B);  A&B values are 10 20

printf(“ %d + %d = %d”, A,B,C);  10+20=30

printf(“hello is %d+1, world is %d+2”, A , B);  hello is 10+1 , world is 20+2

printf(“ XX%dYY%dZZ%d” , A, B, C);  XX10YY20ZZ30

printf(“output is %f”, 10.45);  output is 10.45

printf() with width specifier

we can add ‘width’ to the format strings, for example: %5d , %7d , %05d , %f , %.2f , %05.2f, etc.

%5d  here 5 is said to be maximum width of output value which we want to show on the screen.

if width > output-value size then spaces added by the printf() statement.

if width < digits in value then no spaced added, it prints normally (here ignores the width).

For example,

 printf(“%7d”, 523);  BBBB523 // Here B means blank space, added by printf()

 printf(“%07d”, 523);  0000523 // pads with zeros instead of spaces

 printf(“%02d”, 7234);  7234 // here width < digits in value, so prints normally (no affect)

 printf(“%.2f” , 8671.4256);  8671.42 // .2 is cutoff decimal values

 printf(“%7.3f”, 823.4);  BBBBB823.400

List of all format strings.

%c  It denotes single character (signed/unsigned char)

%d or %i  It denotes signed decimal integer (signed int)

%f  single precision floating point number (float)

%u  unsigned decimal integer (unsigned int)

%ld  signed long decimal integer

%lu  unsigned long decimal integer

%If  double precision floating point number (double)

scanf(): used to read input values from keyboard, here user has to feed/enter values in the keyboard

while running a program, based on input values, the output is displayed. The scanf() waits for user

response until he/she enters some values from the keyboard. ie, pauses the program execution until user

enters input values with the end of input “enter-key”. When enter-key is pressed, then the program

resumes its execution. For example,

program

scanf(“%d%d”, &a, &b);

keyboard

10 20 ⤶

 C-Family 25 Computer Basics

syntax: scanf(“format string”, list of variables with address);

eg: scanf(“%d %d”, &age, &experience);

Here ‘&’ is called address operator, it must be prefixed before every variable at scanf().

Let 34,28 are the input of A,B in the following example, then how the user should be given in the keyboard

scanf(“%d%d”, &A , &B);  34 space 28 ⤶ // space is the default separator between two values

scanf(“%dQQQ%d”, &A , &B);  34QQQ28⤶ // here QQQ is the separator for 34 and 28 values

scanf(“%d/%d”, &A , &B);  34/28⤶ // here slash(/) is the separator or 34 and 28 values

scanf(“%d,%d”, &A , &B);  34,28⤶ // conclusion: other than %d should be given as it is

scanf(“Hello%dWorld%d”, &A , &B);  Hello34World28⤶

scanf(“XY%dZ”, &A);  XY34Z⤶

scanf(“ %d ”, &A);  space34space⤶

note: My suggestion is, do not give any extra symbols in the scanf() format string including spaces.

It should be like “%d%d” should not like “ %d %d “ [this suggestion is for scanf() and not for printf()]

note: the format strings such as %d , %f tells the conversion of binary to decimal-text and decimal-text to

binary while scanning and printing values. These are internally used by the scanf() and printf().

About main() function
The main() works like a start & end point of the program, the execution starts at “void main()” and ends at

last closing braces; Actually, the main() is also a function; among all the functions, main() is an important

and reserved function, it tells to the compiler the starting & ending point of program. The main() can be

written in any of the following ways, and all of them have the same meaning & works in similar way;

(of course different vendors of C, suggested in different ways to this)

Therefore, in a C program there must be at least one function must be exist, that is main(); its execution

starts by operating system when user runs the program. So, the main function is called by the operating

system which is indirectly by the user, for example, when u press F9 or F10 in IDE;

General Structure of C program
The C program looks like following way

void main ()
 { --------

 }

main()
{ ----

}

int main ()
 { --------

 return(0);
 }

Line1 // Comment line about program

Line2 file inclusion statements

Line3 void main()

 {
Line4 variable declaration

Line 5 input statements

Line 6 process statements

Line 7 output statements

 }

 C-Family 26 Computer Basics

ine1: In this line, the comments are added about program, ie, the purpose of program, input/output of

 program, who & when has written, etc. Writing comments is a good programming practice.

 However, this is optional. Compiler ignores comment lines.

line2: Here header files of library functions and other files are included. For example “#include<math.h> for

 math functions, #include<stdio.h> for I/O functions ….etc;

 Note: these files contain syntax of library function to check error at call statements.

line3: “void main ()” represents starting point of program, it tells, the main process begins here.

line4: variables are declared at the beginning of program block, and when this line is executed, space

 is allocated for variables in the RAM.

line5: the input statements are used to accept values from the keyboard and other terminals.

line6: Here process statements specify the processing of input data.

line7: here the output statements are used to show output on the screen or other terminals.

Note: the opening and subsequent closing braces {} defines a block; as per C syntax rules, the instruction

 must be given inside block; all instructions must be terminated by “;”

Coding style of C program
Unlike some other programming languages (COBOL, FORTRAN, etc), C grants a freedom to every programmer to

follow his own style of coding. However, ensure that, the program should be readable and easy to debug by

others. For example, see the following instructions

 a=10;

 b=20;

 c=a+b;

the above sequence of instructions can be written in single line as: a=10; b=20; c=a+b;

to increase readability, we can give more spaces between expressions, that is, we can add extra spaces

before and after of every token such as punctuation symbols, operators, variables and other places.

For example:

 1. a+b  can be written as: a + b // observe spaces added before & after ‘+’ symbol

 2. a+b<d*e  can be written as: a + b < d * e // observe space added here

 3. printf(“hello”);  can be written as: printf (“hello”) ;

1) Demo program addition of two int-values

#include<stdio.h> // we we use printf() or scanf(), we have to include this “stdio.h” file

void main()

{ int A,B,C; // here space creates for A,B,C. Each takes 2byte

 A=10; // assigning 10 to A

 B=20; // assigning 20 to B

 C=A+B; // adding A,B and assigning result 30 to C

 printf(“ output is %d ”, C); // Here C-value substitute in %d place.

} // In this case ‘%’ does not work like remainder operator

 C-Family 27 Computer Basics

2) Demo program addition of two float-values

#include<stdio.h>

void main()

{ float A,B,C;

 A=10.5;

 B=20.3;

 C=A+B;

 printf(“ output is %f ”, C); // for float-type values use %f

}

3) Demo program how to sum up values one by one.

#include<stdio.h>

void main()

{ int sum=0;

 sum=sum+3;

 sum=sum+4;

 sum=sum+5;

 printf(“sum is %d ”, sum);

}

We will see in next chapter, how to compile and run the program on the computer.

4) Finding sum and product of given two input values

This program scans two values from keyboard and prints the sum and product of two values.

 ip: 10 20

 op: sum is 30, product is 200

 #include<stdio.h>

 void main()

 { int a, b, sum, product;

 printf("Enter two values for a , b:");

 scanf("%d%d", &a, &b);

 sum=a+b;

 product=a*b;

 printf("sum is %d , product is %d", sum , product);

 }

printf("enter two values for a , b:")  this statement asks/displays to the user to feed 2 values for a,b

scanf("%d%d", &a, &b);  this statement reads two values from keyboard(KB) and inserts into given

variables (a,b). For two values, we have to use two %d%d, we will see later why %d to be used.

printf("sum is %d, product is %d", sum , product);  this display result as: sum is 30, product is 200

keyboard

10 20 ⤶

 C-Family 28 Computer Basics

5) Demo program how to use pow() and sqrt() math functions.

pow(x,y)  this finds xY , here X is base, Y is exponent.

sqrt(x)  this finds square root of x (√x)

#include<math.h> // when we use pow() or sqrt() function, we have to include this “math.h” file

#include<stdio.h> // we we use printf() or scanf(), we have to include this “stdio.h” file

void main()

{ int A , B;

 A=pow(2,10); // A=2
10

 B=sqrt(16);

 printf(“ A=%d , B=%d”, A , B); // output: A=1024 , B=4

}

6) Finding sum of equation 5x3 + 2x + 10, here ‘x’ is input value

 ip: if x is 3

 op: 5*x*x*x +2*x+10  5*3*3*3+2*3+10  135 + 6 + 10  151

#include<stdio.h>

void main()

{ int x , result;

 printf(“enter x value :”);

 scanf(“%d”, &x);

 result=5*x*x*x+2*x+10; // we can’t write X
3
 in the program, We need to write as x*x*x

 printf(“output is: %d”, result);

}

Note: for bigger values like x10 use pow() function, but for smaller values like x3 write as x*x*x.

 because, the pow() function takes much machine code.

7) Finding Fahrenheit from given Celsius. (formula is: F = 9.0/5*C+32)

This program scans Celsius from keyboard and prints Fahrenheit as output.

ip: enter Celsius: 38

op: Fahrenheit is: 100.4

#include<stdio.h>

void main()

{ float C , F ;

 printf("Enter Celsius:");

 scanf("%f", &C);

 F=9.0/5*C+32;

 printf("Fahrenheit is: %f", F);

}

------- keyboard --------
enter x value: 3⤶

 ------- keyboard -------
Enter Celsius : 38 ⤶

 C-Family 29 Computer Basics

8) Finding area and circumference of circle

The following program accepts radius from keyboard and prints area and circumference.

Logic: based on input value radius, the output (area and circumference) is calculated;

 area is: and circumference is: 2 (in keyboard there is no pie symbol , so use 3.14)

 ip: enter radius: 5

op: circle area is 78.5 , circumference is 31.4

#include<stdio.h>

void main()

{ float radius, area, circum;

 printf("Enter radius of circle :");

 scanf("%f", &radius);

 area=3.14 * radius * radius;

 circum=2 * 3.14 * radius;

 printf(" circle area is %f , circumference is %f", area , circum);

}

9) Demo program on manipulating digits in a number

The operator ‘/’ gives quotient of division, whereas the operator ‘%’ gives remainder. For example

2345/100  23 2345/1000  2 (234/10)%10  (23)%10  3

2345%100  45 2345%1000  456 (234%100)/10  (34)/10  3

2345/10  234 234/1000  0 23%10  3

2345%10  5 27/10  2 7%10  7

 void main()

 { int k , n=2345;

 k=n/100+n%100;

 printf(“\n sum = %d”, k); ?

 k=n%10+n/1000;

 printf(“\n sum = %d”, k); ?

 k = (n/10)%10 + (n/100)%10;

 printf(“\n sum = %d”, k); ?

 }

10. Converting time(H:M:S) into seconds format

This program accepts a time in H:M:S format as input and prints output in seconds format.

 ip: 2 40 50 (2-hr , 40-min , 50-sec) ip: 0 2 50 (0-hr , 2-min, 50-sec)

 op: 9650 seconds op: 170 seconds

logic: total seconds is N=H*3600 + M*60 + S // each hour has 3600 seconds, each minutes has 60 seconds.

 void main()

 { int H,M,S,N;

 printf("Enter time as hours minutes seconds format:");

 scanf("%d%d%d", &H, &M, &S);

 N=H*3600+M*60+S;

 printf("output time in seconds is: %d", N);

 }

 Enter time as hours minutes seconds format: 2 40 50 ⤶

 output time in seconds is: 9650

------ keyboard ------
Enter Radius : 5 ⤶

 C-Family 30 Computer Basics

11. Converting seconds time into H:M:S format

Code to accept a time(N) in seconds format and prints output in H:M:S format

 ip: 7270

 op: 02:01:10 (2-hours, 1-minutes, 10-seconds)

logic: divide N with 3600 and take the quotient as hours, (1hour=3600seconds)

divide N with 3600 and take the remainder(R=N%3600). This R is the remaining seconds left after

 taking hours from N. Again divide R with 60 and collect quotient and remainder.

 The quotient would be minutes and remainder would be seconds.

 void main()

 { int H,M,S,N,R;

 printf("Enter time in seconds format:");

 scanf("%d", &N);

 H=N/3600;

 R=N%3600;

 M=R/60;

 S=R%60;

 printf("output time is %d : %d : %d", H, M, S);

 }

12. Accepting basic salary of employee and calculating net salary

This program scans basic salary from keyboard and prints net-salary. The net is sum of BASIC+HRA+TA
Process: HRA is 24% on basic (HRA  House Rent Allowance)
 TA is 7% on basic (TA  Travelling Allowance)
 net salary = basic + hra + ta;
 void main()
 { float basic, hra, da, ta, netSalary;
 printf("Enter basic salary :");
 scanf("%f", &basic);
 hra=24*basic/100; // calculating 24% for house rent allowance

 ta=7*basic/100; // calculating 7% for travelling allowance
 netSalary=basic+ta+hra;
 printf("Net salary = %f", netSalary);
 }

13. Demo program for swapping two variable values

The following program explains how 2 variable values are exchanged one with the other. This is common

task in the programming and also known as swapping of data.

Logic: Let the input values are 23 & 45 and assigned to X,Y. See what happens, if one has written as

 X=Y;

 Y=X;

When ‘X=Y’ executes, the value of Y is assigned to X and we lost the current value of X. Now the X & Y

contains same value 45. When the second instruction Y=X executes, the same value 45 copied back to Y.

Now both the variables hold the same value and our purpose can’t be survived. Therefore, to exchange two

values a third variable is required. This is explained in the following program.

 void main()

 { int x, y, temp;

 printf("enter 2 values :");

 scanf("%d%d", &x , &y);

 C-Family 31 Computer Basics

 printf("\n before swapping the x,y are %d,%d", x, y);

 temp=x; // saving ‘x’ value in temporary variable.

 x=y; // replacing x-value by y-value.

 y=temp; // now replacing y-value by x-value.

 printf("\n after swapping the x,y are %d %d", x, y);

 }

Output

ip: enter 2 values: 23, 45

op: before swapping, the x , y are 23 , 45

 after swapping, the x , y are 45 , 23

14. Finding reverse of 2-digit number

This program accepts a two-digit number like 47 and prints the reverse of it (74).

Logic: For example, the value 735 composed as  7*100 + 3*10 + 5*1.

 Similarly, the reverse of it is  5*100 + 3*10 + 7*1

In this way, we can find the reverse of two digit number

 void main()

 { int n, reverse;

 printf(“\n enter two digit single number :”);

 scanf(“%d”, &n);

 reverse=n%10*10+n/10;

 printf(“\n reverse = %d”, reverse);

 }

Let us substitute the value 47 in the expression “reverse = n%10*10+n/10”

reverse = n%10*10 + n/10;

 = 47%10*10 + 47/10

 = 7*10+4;

 = 74

15. Printing sum of arithmetic, relational, and logical operations of two values

void main()
{ int a,b;
 printf("enter 2 values :");
 scanf("%d%d", &a, &b);
 printf("\n a+b=%d", a+b);
 printf("\n a-b=%d", a-b);
 printf("\n a%%b=%d", a%b);
 printf("\n a>b=%d", a>b);
 printf("\n a<b=%d", a<b);
}

output

 ip: 11 4
 op:
 a+b=15
 a-b=9
 a%b=3 (remainder)
 a>b=1 (true)

 a<b=0 (false)

Note: In condition place, the value non-zero is taken as true, whereas, zero is taken as false

 10) 47 (4  n/10

 40

 7  n%10

 C-Family 32 Computer Basics

16. Printing size of different data types

The following program shows memory occupied by each data type in C.

The sizeof() is an operator, it gives the size of variable or data-type.

Developing, compiling, running, and debugging a program

A) Developing: Once a program has been designed and written, it must be entered before executing on

the system. If one wants to feed the program into computer, he needs a software tool to type the

instructions, and also allow modifying, deleting, copying, and other editing facilities. This is provided by the

special software called Editor. We have several editors to feed (type) the program into computer. The

editors like notepad, word pad, ms-word … etc. The notepad allows only typing and saving the code, it does

not provide to compile/run the programs. Fortunately, today, every language supplier providing a special

Editor along with compiling, debugging, running facilities. All these features are available in one editor,

therefore it is called “integrated development environment (IDE)”.

File menu: this menu-driven facility used to handle file operations such as opening a new file, or opening an

existing file, saving a file, etc.

Edit menu: this is used to copy, cut, and paste a group of selected lines.

Compile menu: to create object files, making executable files, linking a program….

main()
{ long int k;
 printf("\n size of int is %d byte" , sizeof(int));
 printf("\n size of float is %d byte ", sizeof(float));
 printf("\n size of k is %d bytes" , sizeof(k));
 printf("\n size of 10 is %d bytes" , sizeof(10));
}

Output

 size of int is 2 byte
 size of float is 4 byte
 size of k is 4 bytes
 size of 10 is 2 bytes (10 is int-type)

 C-Family 33 Computer Basics

B) Compiling & Running: compilation process has two stages called  compiling + linking

In compilation stage, it checks the typing and syntax errors, after rectifying them, it creates object file, which

is semi executable file. Here each function compiled independently and code is generated separately as they

are in source file. Later linker links all library and user-defined functions together to form a single executable

file. For example, main() function with printf() as shown in the above examples. The following figure shows

how they are compiled and linked to the program.

Procedure to execute C-program in turbo C++ IDE on DOS environment

To do one more program

 Open the Editor (tc)

 Open a new file (alt+fnew)

 Type the C program

 Compile the program (f9)

 Run the program (ctrl+f9)

Watch the output values (alt+f5)

 Close the program (alt+f3)

To close lab(alt+x)

)

 Save the program into disk (f2)

 Type the input values

 C program file.

 let file name is “sample.c”

 Compiler software

Executable file

 “sample.exe”

 Produce semi executable

 object file “sample.obj”

 Linker Software
 Library functions

 are attached here

 C-Family 34 Computer Basics

C) Compiler vs Interpreter

Interpreter is a translator, which translates and executes our program. It translates one line at a time and

immediately executes on the machine. It translates line by line and executes instantly on the machine. So, it
also called instant compiler. Whenever we run the program, the interpreter translates and executes, if we
run more times, more translations it takes. It seems to be unnecessary translating same program again &
again in every use. This redundant translation leads to wastage of CPU time and other resources.

Actually, interpreter is used for single-use applications like queries, commands, to check spellings in word

processing, language translators, internet browsing, etc. The web-sites are coded in the form of html, css,

etc and these files are downloaded and interpreted by the browsers, web browsers are nothing but

interpreters. So, for single use applications interpreter is the choice.

Compiler translates line by line and stores into “.exe” file to execute later time, thus instead of executing

each line instantly on the processor, it stores into .exe file. Now this file contains all machine code
instructions of our C-program’s source file. This file can be executed directly on the machine whenever we
want, while running this .exe file, the compiler is not required. So here, no translation takes place again &
again in every use. The interpreter doesn’t create “.exe” file, so in every use translation is required.

Some kind of applications needed to execute regularly like calculator, business accounting, games, etc.
Here compiler is used to generate machine code file, so that, such file can be executed at any time without
translating again and again.
Conclusion: compiler is the choice for regular use code, whereas interpreter is the choice for single use code.
For single use applications, it is un-necessary creating machine code file.

Escape sequence characters
The symbol back slash (\) is called escape character, used to represent some special keys or symbols like

New Line, Carriage Return, Tab Spaces, etc. Escape sequence characters are

1. \n  new line (new line)

2. \t  horizontal tab space (4 gaps)

3. \\  single back slash (\), inserts slash in output.

4. \”  double quotes character (differently with the string enclosure).

5. \’  single quote character (differently with the character enclosure).

Let us see the following examples.

 1. printf(“Hello\nHari”);  shows “Hello” in one line and “Hari” in next line on the screen

 2. printf(“Hello\tHai”);  Hello Hai (4-gaps between Hello & Hai)

 3. printf(“ \”hello\” ”);  “hello”

 4. printf(“ \’hello\’ ”);  ‘hello’

 5. printf(“\\ hello\\”)  \hello\

C program file

 say ‘Sample.c’

File: ‘Sample.exe’

all machine code instructions

are collected here

Compiler : translates line by line

sends to exe file

C program file

say ‘Sample.c’

Processor

executes given instruction

one at a time

Interpreter

(translates one line at a time and

sends to processor to exeucute)

C-Family 35 Type Casting

Type casting
Process of converting a value from one type to another type is called type casting. In C, the type casting is

done in two ways. ①Implicit type casting (automatic casting) ②Explicit type casting (manual casting)

①Implicit Type Casting

For example, the expression 10+20.54 (int+float), here the value 10 automatically converts int to float

(10 to 10.00) because, we must hand over same size and type of values to the processor before computing.

The processor performs operations bit by bit on two values, so they must be same size and type. Compiler

automatically does this conversion when two values are not same type in the expression. In this way,

Compiler automatically converts/promotes this lower-type values to higher-type with in the expression.

Let us see some examples,

eg1: 10.5 + 20; here the value 20 converted into 20.00 by the compiler implicitly

eg2: 10 * 20.00; here the value 10 converted into 10.00 by the compiler implicitly

eg3: int x=10; float y;

 y=x; // Here ‘x’ value 10 is converted to float-type, so 10.00 stored into ‘y’

eg4: long int Y=9023455L;

 int X;

 X=Y; //here we are trying to assign 4-byte value into 2-byte memory, so only right most 2byte Y value is assigned to X

 results loss of some bits.

eg5: int x; float y=29.34;

 x=y; //Here the integer part of ‘y’ value 29 is assigned to ‘x’ (fraction bits will be truncated/omitted)

eg6: void main()

 { int X=5;

 float Y=12.33, Z;

 Z=X*Y; // here ‘X‘ behaves like a float-type at this expression

 printf(“ Z value = %f”, Z); // Z value = 61.65

 }

 eg7: void main()

 { float k;

 int a=10, b=3;

 k=a/b+5;

 printf(“\n Result of K = %.2f”,k); // Result of K=8.00

 }

Here, the expression a/b gives int type result 3 (not 3.33) as both a&b are integer types.

Later, this result is added to 5, which is again int type; finally, this result gets converted implicitly to float

and assigned to k. Therefore the output  ‘Result of K=8.00’ . The solution is, explicit casting required.

This is as given below examples.

Expression  After conversion  Result
int/int no conversion int

float/int float/float float

int * int no conversion int

int * long int long int * long int long int

int * float float * float float

float * double double * double double

C-Family 36 Type Casting

②Explicit type casting
Sometimes, we need to convert explicitly to get desired result from the expression.

syntax: (conversion-type) expression

 eg1: (float) 15  15.00

 (int) 2.6  2

In the above expression, 15 is int. But, upon prefixing (float)15, its type will be changed to float as 15.00

eg2: void main()

 { int a=10, b=3;

 float k;

 k=a/b;

 printf(“\n Before type casting K=%f ” , k);

 k=(float) a/b; // here ‘a’ converted by us, whereas ‘b’ converts by the compiler.

 printf(“\n After type casting K= %f ”, k);

 }

Before type casting K=3.000000

After type casting K= 3.333333

eg3: void main()

 { int a=30, b=20000;

 long int k;

 k = 10 + a*b;

 printf(“\n Before type casting K=%ld”, k);

 k = 10 + (long int) a*b;

 printf(“\n After type casting k=%ld”, k);

 }

 Before type casting K=10186 (un-expected value)

 After type casting K= 600010

K=10 + a*b  here first, the result of ‘a*b’ is calculated and stored into a temporarily variable (say it is T),

later 10 is added to T. Finally, T value is assigned to K. The nameless variable T is automatically created by

compiler and it is of type int; because a & b are int types, so T will be the int type.

But the result of a*b is bigger than the integer range and it cannot hold by T, results loss of some bits while

storing into T. Solution is, K=10+(long int)a*b  here ‘a’ is long int, which we converted, and ‘b’ is

converted by the compiler, then T will be the long int and it can hold the result of a*b;

Representation of Constants in C
In programming, Data is represented in two ways in terms of constants and variable data. Constants are
represented in special manner by adding format string or other symbols to the value. For example, ‘10L’ is
long int type, 10F is float type..

Automatically, compiler understands some types of constants in the program. For example, the constant ‘10’
is considered as int-type, 34.55 as double-type, ‘A’ as char-type. These are default types and automatically
understand by the compiler. But some constant types are needed to specify explicitly along with format
string. The following list explains about all constant types. Do not use other symbols like comma, spaces,
quote, etc while specifying constants.

C-Family 37 Type Casting

integer Constants
A collection of one or more digits with or without a sign referred to as singed int constants. This is the
default type for integral values.
eg. 5, 256, 9113, 6284, +25, -62, etc are valid signed integers.
Similarly, to represent unsigned int, the format string ‘u’ or ‘U’ is suffixed to the value.
eg. 67U, 43U, 4399u, 45u are valid unsigned integers.

Note that, -3428u is also a valid number. Here this -3428 is converted into equivalent unsigned integer
62108. Because, here the sign bit is also considered as data bit. (But this style is not recommended)
Some invalid declaration of integer constants is:
 15,467 $25,566 4546Rs

long integer constants
for the long integer constants, the format string ‘l’ or ‘L’ is suffixed to the value.
eg: 2486384L –123456L 5434545l –34545l are valid long int constants
 893434lu -3Lu … etc are valid unsigned long integers.

Octal int/long integer constants
for the octal integers, zero is prefixed before the value. (0 is like octal).
eg: 0123, 0574, 01, 046342L etc are valid octal integers.
 0181, 09, 12, etc are in-valid octal integers. (In octal system 0-7 digits are used)

Hexadecimal int/long integer constants
in the hexadecimal number system, the symbols 0, 1, 2, 3 … 9, A, B, C, D, E, F are used.
(Total 16 symbols are used; because, the number system’s base is 16)
The symbol “0x or 0X” is prefixed before the hexadecimal number.
For example: 0x1, 0x123, 0xa5, 0xfldb, 0x0, 0xABC, 0xflc etc are valid hexadecimals.

character constants

To specify a character constant, we must enclose the character within the pair of single quotes.
 eg. ‘A’ ‘z’ ‘s’ ‘8’ ‘+’ ‘;’ etc

string constants
It is a collection of characters enclosed within double quotes, used to represent names, codes, abels, etc.
eg: “Hello! Good morning!” “Magic mania” “A” “123” “A1” “#40-5-8A” “C-Family”

float constants (Real numbers)
We can specify the real numbers in two different notations, namely general and scientific notation.
Here the format string ‘f’ is attached at the end of value.
In normal representation: 3.1412f -25.62f 98.12f -045632.0f 1.f 9.13f
In scientific exponential representation: the syntax is [-]d.dddde[+/-]ddd where d is any digit.
 2.32e5f (means 2.32 x 10^5 i.e. 232000.0)
 12.102e-3f (means 12.102 x 10^-3 i.e., 0.012102)
 -2. 165e6f (means -2.165 x 10^6 i.e., -2165000.0)
 3.68e3f (means 3.68 x 10^3 i.e., 3680.0)

double constants: This is the default type for real numbers (floating point values).

eg: 1.2 45.3 4.39393 349.34899034
 45.4e15 44.54e4 (‘l’ or ‘L’ is option for double)

long double: for the long double, the format string ‘l’ or ‘L’ is used.

eg: 3.14L
 314.41 (Equivalent to 314. 0L)
 3.68e3L (Means 3.68 x 103 i.e., 3680.0L)

 C-Family 38 flow charts

 Flow chart
It is a pictorial representation of flow of a program, which illustrates the sequence of operations to be

performed to get the solution of a problem. It is often used as a visual planning tool, how the control to be

moved from one point to another point to get a solution. It is like drawing a building plan before

constructing a building.

Flowcharts are generally drawn in the early stages of formulating computer solutions. It facilitates the

communication between programmers and business people. It plays a vital role to understand the logic of

complicated and lengthy problems. Once the flowchart is drawn, it becomes easy to write the program in

any high-level languages. The following mathematical symbols are used to represent specifications with

directions to indicate the flow of control.

 Start/stop a program

 Rectangle for processing general instructions

 Circle for connection

 Arrows for directions

 Rhombus for decision making

 Parallelogram for Input/output from terminal

 Cylinder for secondary Memory (external storage)

 RAM (internal storage)

 Predefined actions

 File

 Looping

 C-Family 39 flow charts

Algorithm
In mathematics and computer science, an algorithm is a finite set of computational instructions that carry

out a particular task, which takes input and produces desired output. In simple words, it is step-by-step oral

explanation of logic how to construct instructions in a program; here English & math symbols are used to

explain logic in words

Flowchart depicts how the control to be moved in the program from one point to another point to get a

solution, whereas algorithm tells step-by-step explanation how to construct instructions in a program.

This is an independent method to explain the logic regardless of programming language used by the

programmer. Here English and math symbols are used to explain the logic. People write algorithm for

complex and complicated tasks to explain the logic in words, for example, sorting algorithms, searching

algorithms, shortest path in network …etc. Any algorithm follows,

1. Describes the input and output

2. Describes the data entities with purpose (variables)

3. Explains process in step by step using English and math symbols

4. Add comments at every step what it does, use square brackets [] for comments

5. Each instruction is clear and unambiguous (definiteness)

6. The algorithm terminates after finite number of steps

Note: there are no standard rules and regulation to implement algorithm/flowchart, so one can implement

one’s convenience but ensure that other must be understood it.

The flowchart and algorithm to find big of two numbers

Flow chart to find big of two numbers

 true false

Algorithm to find big of two numbers

step1: let us take a,b as integer type variables
step2: let us take ‘big’ to store big value
step3: [scanning input from keyboard]
 read(a,b)
step4: [finding big of 2 numbers]
 if(a>b) big=a
 else big=b;
step5: [printing output]
 print(big)
step6: [closing the program]
 stop

Start

read(a,b)

if a>b

big=a big=b

stop

Print(big)

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Computer_science

 C-Family 40 flow charts

Flowchart for finding big of three numbers

 true false

 true false true false

Flowchart to Find sum of 1 to n numbers(1+2+3+4…+n)

 false

 true

if(a>b)

print((c)

Start

read(a,b,c)

print(a)

 stop

if(a>c) if(b>c)

print((b) print((c)

start

print(“enter n:”);

 read(n)

if(i<=n)

sum=sum+’i’;

i++;

 sum=0;

 i=1;

 print(sum)

 stop

 C-Family 41 flow charts

Pseudo code
Pseudo code is a short hand way of describing a program or algorithm in general language syntax rather

than in specific language syntax. Algorithm uses English and math symbols to explain logic in stepwise,

whereas pseudo code uses programming language syntax to explain logic in term of instructions. So pseudo

code resembles the program with general language syntax. Most of the people adopt C or Pascal language’s

syntax and their control structures to describe the pseudo code.

Algorithm is understandable by any nonprogrammer but pseudo code understandable by a person who

knows at least one programming language. So it is a method used to explain the logic between two

programmers. It is easier for programmers to understand the general workings of one program which is

written by another programmer.

Flow chart shows only execution flow (directions), algorithm explains, what are the steps be taken to get a

solution, but it does not give clear explanation of how to write instructions, for example, to swap 2 values in

the algorithm, we write as: swap(a,b). In pseudo code we write as: t=a, a=b, b=t. So, in pseudo code every

step is written in detailed, which is near to programming. So, one can say loosely, pseudo code is nothing

but a program without accurate syntax (syntax is ignored).

 [FlowchartAlgorithm Pseudo codeProgram]

Example for Pseudo code: Calculating sum of 1 to n numbers (1+2+3+4…+n)

Algorithm (finding sum of 1 to n) Pseudo code (finding sum of 1 to n)

1. [variable declaration]
 n, i, sum : integers

2. [scanning input]
 read(n);

3. [initializing variables]
 i=1; sum=0;

4. * adding values 1,2,3,… n to sum+
 Repeat until<=n
 sum=sum+i;
 i++;

5. [printing ouput]
 print(sum);
6. [exiting the program]

 stop;

1. Start
2. int sum,i;
3. read(n);
4. set i=1, sum=0;
5. while(i<=n)

{ sum=sum+i;
 i=i+1;
}

6. print(sum);
7. stop;

 C-Family 42 flow charts

 C-Family 43 if-else

Control Statements
 Generally, instructions in a program are executed sequentially one after the other, in an order in which they

appear in the program. However, in practice, we need to bypass the control over some set of instructions, or

repeatedly process some instructions or to alter some other sequence depending upon the requirement.

For this purpose, special statements are necessary in programming to handle the control accordingly.

C possesses such a handy control statements like if, if-else, switch, while, etc. These statements alter the

normal execution sequence of a program according to our requirement. Therefore, these statements are

called as control statements. These control-handling statements are of two types.

① Conditional control statements ② Unconditional control statements

Decision control statements: These statements change the flow of execution depending on given logical

condition. Used to execute or skip some set of instructions based on given condition.

Loop statements: These are also called iterative statements, used to execute some set of instructions re-

peatedly until a given condition is failed.

Unconditional control statements: These statements unconditionally transfer the control from one location

to another specified location within a program.

if – statement
It is a decision control statement, executes or skips a given set of instructions depending upon the given test

condition. The syntax is

 if(test-condition)

 { instruction 1;

 instruction 2;

 instruction 3;

 }

 instruction 4; // after “if” statement

 instruction 5;

In the above if-statement, if the test-condition is success (true) then instruction1, instruction2, instruction3

will be executed, later the control comes out of if-body and proceeds with instruction4, instruction5 …etc.

This is shown in the flow chart.

If the result of test-condition is false then control jumps out of if-body and proceeds with instruction 4,

instruction5 …etc. In this case, the instruction1 to instruction3 will not be executed.

 Control statements

 Conditional Un-conditional

1) if

2) if-else

3) conditional operator

4) switch case selection

1) while

2) for

3) do-while

1) goto

2) break

3) continue

4) return

 Decision Looping

true

test condition
false

 Instruction 1;

 Instruction 2

 Instruction 3

 Instruction 4

 Instruction 5

 C-Family 44 if-else

Demo1 program, explains how an if-statement executes

 #include<stdio.h>

 void main()

 {

 if(10 > 5)

 { printf(“hello ”);

 }

 if(10 < 5)

 { printf(“hai ”)

 }

 printf(“bye”);

 }

 op: hello bye

In the above, the first condition (10>5) is a true, so printf(“hello”) will be executed, but the second condition

(10<5) is false, so printf(“hai”) will not be executed. The final printf(“bye”) executes irrespective of

if-statements.

Demo2 program, explains how an if-statement executes

 void main()

 { if(1 < 2)

{ printf(“ Red ”);

}

printf(“ A ”);

if(1 > 2)

{ printf(“ Blue ”);

}

printf(“ B ”);

if(1 == 1)

{ printf(“ Green ”);

}

printf(“ C ”);

if(1 != 1)

{ printf(“ Yeloow ”);

}

printf(“ D ”);

 }

op: Red A B Green C D

 C-Family 45 if-else

Finding absolute value of a given number ‘n’ modulus of |n|

This program accepts +ve or –ve integer from keyboard and displays result in +ve.

If user entered –ve value, converts it into +ve by multiplying it with -1.

 ip: -14 ip: 15

 op: 14 op: 15

void main()

{ int n;

 printf(“Enter a +ve/-ve value ”);

 scanf(“%d”,&n); true

 if(n<0) // if n<0 means, it is -ve

 { n=n*-1; // if –ve, then converting to +VE

 }

 printf(“\n Result = %d”, n);

}

In this program, the instruction n=n*-1 executes when the input is -ve.

Finding difference of two numbers, the difference must be +ve

 ip: 12 18 ip: 18 12
 op: 6 op: 6
 void main()

 { int A, B , diff ;

 printf(“Enter two values :”);

 scanf(“%d%d”, &A, &B);

 diff = A-B;

 if(diff<0) // if difference is -ve , then converting into +ve

 { diff = -1 * diff;

 }

 printf(“difference is %d”, diff);

 }

Sorting 3 values into ascending order

If three integers(A, B, C) are input from KB, code to replace 3 values into sorted order(A<B<C)

 ip: 12 5 65 ip: 12 6 3 ip: 10 5 2

 op: 5 12 65 op: 3 6 12 op: 2 5 10

 if(A>B)

 { temp=A; // this swaps 10 5 2  5 10 2

 A=B;

 B=temp;

 }

 if(A>C)

 { ----- // this swaps 5 10 2  2 10 5

 }

 if(B>C)

 { ------ // this swaps 2 10 5  2 5 10

 }

 print A, B, C // output will be sorted order, this logic works for any kind of input values.

--

false

true

 start

 read(n)

 if n>0

 n=n*-1

 print(n)

 stop

 C-Family 46 if-else

if-else statement
This is two-way decision control statement, executes either if-block or else-block based on given condition.

If the condition is true then if-block executes, otherwise else-block executes. Let us see the syntax,

 if (test-condition)

 {

 instruction 1;

 instruction 2; // if-block

 instruction 3;

 }

 else

 {

 instruction 4;

 instruction 5; // else-block

 instruction 6;

 }

 instruction 7;

 instruction 8;

In the above if-else statement, always only one block will be executed, either if-block or else-block.

The test-condition is true, if-block is executed, and otherwise, the else-block is executed.

If the test-condition is true, the instruction1, instruction2,instruction3 will be executed, later control jumps

out of ‘if’ construct and proceeds with instruction7 , instruction8 …

If the condition is false, the else-block is executed i.e., instruction4 , instruction5, instruction6 are executed

and then control proceeds with instruction7, instruction8 … statements.

Demo program how an if-else executes

 void main()

 { if (1<2)

 { printf(“sky is blue”);

 }

 else

 { printf(“sea is blue”);

 }

 if (1>2)

 { printf(“C is simple”);

 }

 else

 { printf(“C++ is also simple”);

 }

 }

op: sky is blue C++ is also simple

true

false
 Test

condition

 Instruction 1;

 Instruction 2;

 Instruction 3;

Instruction 4;

Instruction 5;

Instruction 6;

Instruction 7;

 Instruction 8;

 C-Family 47 if-else

Finding a person is minor or major

This program finds whether a person is minor/major depending upon his age.

If age<=18 then it displays “minor”, otherwise “major”

 ip: 15 ip: 25

 op: minor op: major

 void main()

 { int age;

 printf(“Enter the age:”);

 scanf(“%d”, &age);

 if(age<=18)

 { printf(“minor”);

 }

 else

 { printf(“major”);

 }

 }

 Finding given number is odd/even

This program accepts a number from keyboard and finds whether it is odd or even?

 ip: 25 ip: 24

 op: odd op: even

Logic: divide the input number with 2, and check the remainder; if the remainder is zero then it is said to be

 even, otherwise odd.

 void main()

 { int n;

 printf(“Enter a number :”);

 scanf(“%d”, &n);

 if(n%2==0) // n%2 gives remainder of division

 { printf(“even number”);

 }

 else

 { printf(“odd number”);

 }

 }

The evaluation of if-statement is as follows

if(true)

 printf(“minor”);

else

 printf(“major”);

if(12 <= 18)

 printf(“minor”);

else

 printf(“major”);

printf(“minor”);

Let age is 12

if(age <= 18)

 printf(“minor”);

else

 printf(“major”);

if(1==0)

 printf(“even”);

else

 printf(“odd”);

if(13%2==0)

 printf(“even”);

else

 printf(“odd”);

if(false)

 printf(“even”); X

else

 printf(“odd”); √

Let input is n=13. Then

if(n%2==0)

 printf(“even”);

else

 printf(“odd”);

 C-Family 48 if-else

About Pair of Braces { }

The pair of braces is optional when if-body or any control statement body contains only single instruction.

That is, the pair of braces is not required when if-body or else-body contained only single instruction.

The following code shows how to remove braces when single instruction exists in if-body or else-body.

 if(A>B)

 { printf(“Red”);

 }

 printf(“Blue”);

 printf(“Green”);

// code after removing unnecessary braces

 if(A>B)

 printf(“Red”);

 printf(“Blue”);

 printf(“Green”);

 if(A>B)

 { printf(“Red”);

 }

 else

 { printf(“Blue”);

 }

 printf(“Green”);

// code after removing unnecessary braces

 if(A>B)

 printf(“Red”);

 else

 printf(“Blue”);

 printf(“Green”);

 if(A>B)

 { printf(“Red”);

 }

 else

 { printf(“Blue”);

 printf(“Green”);

 }

 printf(“White”);

// code after removing unnecessary braces

 if(A>B)

 printf(“Red”);

 else

 { printf(“Blue”);

 printf(“Green”);

 }

 printf(“White”);

 if(A>B)

 { printf(“Red”);

 printf(“Blue”);

 }

 else

 { printf(“Green”);

 }

 printf(“White”);

// code after removing unnecessary braces

 if(A>B)

 { printf(“Red”);

 printf(“Blue”);

 }

 else

 printf(“Green”);

 printf(“White”);

 if(A>0)

 { printf(“ A is +VE”);

 }

 if(A<0)

 { printf(“ A is -VE”);

 }

 if(A==0)

 { printf(“ A is Zero”);

 printf(“ A is +VE”);

 }

// code after removing unnecessary braces

 f(A>0)

 printf(“ A is +VE”);

 if(A<0)

 printf(“ A is -VE”);

 if(A==0)

 { printf(“ A is Zero”);

 printf(“ A is +VE”);

 }

 C-Family 49 if-else

Code with Indentation

the instructions inside if-block or else-block or any block should be started with indentation.

The indentation means giving tab-space before instructions (it is like starting space before paragraph begins)

This indentation makes the program easy to read and understand. It signifies which instruction is inside and

which is not. Remember if we do not follow indentation then code becomes difficult to read & understand.

C compiler does not force you to follow it, so it does not show any error if indentation is ignored.

(Python language forces you to follow it). Following example shows indentation.

 if(A>B)

 printf(“Red”);  with indentation

 printf(“Blue”);

 printf(“Green”);

 if(A>B)

 printf(“Red”);  without indentation (makes confusion)

 printf(“Blue”);

 printf(“Green”);

 if(A>B)

 printf(“Red”);  with indentation

 else

 printf(“Blue”);  with indentation

 printf(“Green”);

 if(A>B)

 printf(“Red”);  without indentation (makes confusion)

 else

 printf(“Blue”);  without indentation (makes confusion)

 printf(“Green”);

 if(A>B)

 {

 printf(“Red”);  with indentation

 printf(“Blue”);

 }

 printf(“Green”);

 if(A>B)

 {

 printf(“Red”);  without indentation (little confusion)

 printf(“Blue”);

 }

 printf(“Green”);

 with indentation, no confusion

 if(a==10)

 {

 printf(“red”);

 if(b==20)

 printf(“green”);

 else

 { printf(“blue”);

 printf(“white”);

 }

 printf(“black”);

 }

 Code without indentation, here lot of confusion

 if(a==10)

 {

 printf(“red”);

 if(b==20)

 printf(“green”);

 else

 {

 printf(“blue”);

 printf(“white”);

 }

 printf(“black”);

 }

something wrong in this code, fix it

 if(A<B)

 printf(“one”);

 printf(“two”);

 else

 printf(“three”);

 printf(“four”); // take into else-body

 printf(“five”); // don’t take into else-body

something wrong in this code, fix it

 a=4, b=4;

 if(a=b) // takes as assignment, not as comparison, so use ==

 printf(“a, b are equal”);

 else

 printf(“a,b are not equal”);

 C-Family 50 if-else

Finding a year is a leap year or not?

This program accepts year in a date and finds whether it is leap year or not?

 ip: 2000 ip: 2005

 op: 2000 is a leap year op: 2005 is not a leap year

Logic: if a year is divisible with 4, then it is said to be leap year otherwise non-leap year.

 void main()

 { int year;

 printf(“Enter year of date:”);

 scanf(“%d”,&year);

 if(year%4==0) // the operator % gives remainder of a division

 printf(“\n year is a leap year”); // observe here , braces removed

 else

 printf(“\n year is not a leap year”);

 }

If the remainder of division “year%4” is zero, then year is said to be leap year, otherwise, not a leap year.

The evaluation of if-statement is as follows

Finding biggest of two numbers

This demo program accepts two numbers from keyboard and displays big.

 ip: 12 5 ip: 7 15

 op: big=12 op: big=15

void main()

{ int a,b,big;

 printf(“Enter any two numbers:”);

 scanf(“%d%d”, &a, &b);

 if(a>b)

 big=a;

 else

 big=b;

 printf(“biggest is %d “ , big);

 }

Here, if the condition a>b is true, then big=a will be executed, or else, the big=b will be executed.

So, always either if-block or else-block will be executed. Observe above code, braces removed.

Above code in simple style

if-body & else-body contains only single instruction then better to write in single line as shown below

(many professionals coders follow this style of coding only)

 If(a>b)

 big=a;

 else

 big=b;

 // writing in same line

 if(a>b) big=a;

 else big=b;

if(2000%4==0)

 printf(“leap year”);

else

 printf(“not a leap year”);

Input: 2000

if(year%4==0)

 printf(“leap year”);

else

 printf(“not a leap year”);

if(0==0)  true

 printf(“leap year”); √

else

 printf(“not a leap year”); X

 C-Family 51 if-else

Finding difference of two numbers

This program accepts two values from keyboard and prints the difference in +ve (like |x|)

(absolute value of difference of two numbers)

 ip: 12 18 ip: 19 11

 op: 6 op: 8

Logic: User may enter numbers in any order, for example (12, 18) or (18, 12).

After subtracting, if the difference is –ve, then convert by multiplying with -1.

 void main()

 { int a, b, diff;

 printf(“Enter any two numbers:”);

 scanf(“%d %d”, &a, &b);

 diff=a-b;

 if(diff < 0) // if difference is -ve

 diff = -1*diff; // converting to +ve by multiplying with -1

 printf(“\n difference = %d”, diff);

 }

 We can write the logic in other way as (subtracting small from big)

 if(a>b) diff=a-b;

 else diff=b-a;

Finding reverse of 2 and 3 digit number

This program accepts a single number contained 2/3 digits and prints in reverse.

 ip: 723 ip: 26

 op: 327 op: 62

Logic: to get reverse of 29, compose the number as 9*10+2  92

 to get reverse of 723, compose the number as 3*100+2*10+7*1

 void main()

 { int n, rev;

 printf(“Enter 2/3 digit single number :”);

 scanf(“%d”, &n);

 if(n<100) // if n<100 then it is a two digit number

 rev=n%10*10 + n/10; // reversing 2 digit number

 else

 rev=(n%10)*100 + (n/10%10)*10 + n/100*1; //reversing 3-digit number

 printf(“reverse = %d”, rev);

 }

 C-Family 52 if-else

Count and Boolean logics

sometimes, the count logic makes the program easy, here we check and count the input values in favor of

+ve or -ve side comparison and we take final decision on count. Let us see following examples.

Note: this logic explained without using logical operators (&& , ||)
example1: Let student has 2 subjects, If he obtained>50 in 2 subjects then print “passed” or else “failed”.

 ip: 51 60 ip: 30 60 ip: 90 60

 op: passed op: failed op: passed

logic is: step1: first take ‘count’ as zero // count=0;

 step2: scan(m1 , m2)

 step3: if(m1 > 50)

 count++;

 step4: if(m2 > 50)

 count++;

 step5: if(count==2) printf(“passed”);

 else printf(“failed”);

example2: Let there are 3 values A, B, C, now finding at least one value is -ve or not?

 ip: 10 20 -30 ip: 10 -20 -30 ip: 10 20 30

 op: yes , -ve exist op: yes , -ve exist op: no , -ve exist

logic is: step1: first take ‘count’ as zero // count=0;

 step2: scan(A,B,C)

 step3: if(A < 0)

 count++;

 step4: if(B < 0)

 count++;

 step5: if(C < 0)

 count++;

 step6: if(count==0) printf(“no, -ve found ”);

 else printf(“yes, -ve found”);

--

P1) try yourself, check given input ‘time’ values are valid or not ? (take time as 3 values for H,M,S)

 if seconds and minutes must be < 59 and hours must be < 12 (do not use logical operators)

 ip: 10 4 30 ip: 15 4 30 ip: 5 44 30 ip: 3 4 89

op: valid inputs op: invalid inputs op: valid inputs op: invalid inputs
--

P2) try yourself, find given input ‘N’ value is in between 10 to 20 or not? (do not use logical operators)

 ip: 12 ip: 25 ip: 5

 op: yes op: no op: no

--

 C-Family 53 if-else

Boolean or bool logic

What is bool or boolean: A well-known Scientist George Boole applied probability theory to solve some kind

of mathematical algebraic problems(Boolean Algebra). We know, in math, probability value ranges 0 to 1.

Here the value 0 represents no-hope, whereas, 1 represents 100% hope. (0.5 represents 50% hope).

These values adapted to computer science and calling them as Boolean values, used for 2-way decisions

output problems. The problems like pass/fail, exist/not-exist, even/odd, prime/not-prime, etc.

We can use any other values instead of 1/0, but it is informal.

Generally, 0 is used for –ve result like failed case, whereas 1 is used for +ve result like success case.

Procedure for Boolean logic:

step1: take Boolean variable mostly with name ‘bool’

step2: first, we need to take assumption of result +ve or –ve side (most of the time it is +ve side)

 so take boo1=1;

step3: now check each input value in opposite side of assumption, check all values one by one.

 if any input value is true then set bool to 0.

step4: finally, the result in bool in the form of 1 or 0. Now check bool and print result.

Let us see following examples

example 1) If marks of 2 subjects scanned from kb, write a program to print student is passed or failed;

If student obtained>=50 in 2 subjects then print “passed” or else “failed”.

 ip: 51 60 ip: 30 60 ip: 90 60

 op: passed op: failed op: passed

 bool=1; // let us assume student has passed, so take ‘bool’ as 1. (we can take any name for bool).

 if(m1<50) // now checking opposite side of above assumption

 bool=0; // if this condition is true, the student failed, so set ‘bool’ to 0

 if(m2<50)

 bool=0; // if this condition is true, the student failed, so set ‘bool’ to 0

 // in the above code, if at least one if-condition is true then ‘bool’ becomes 0, it indicates that, the student failed.

 // now result is in ‘bool’ in the form of 1 or 0, so check ‘bool’ value and print “pass” or “fail”

 if(bool==1) printf(“passed”);

 if(bool==0) printf(“failed”);

example 2) finding given input number(N) is in b/w 10 to 20 or not? (finding using bool logic)

 ip: 12 ip: 25

 op: yes, it is op: no, it is not

 k=1; // here ‘k’ is Boolean variable, and assume N is in b/w 10 to 20, so taking k=1

 if(N<10)

 k=0; // here N is below 10, so not in 10 to 20, then taking k=0

 if(N>20)

 k=0; // here N is above 20, so not in 10 to 20, then taking k=0

 if(K==1) printf(“yes, it is in b/w 10 to 20”);

 else printf(“no, it is not in b/w 10 to 20”);

--

 C-Family 54 if-else

P3) try yourself, if three integers are input through the keyboard, then find at least one value is –ve or not?

try using Boolean logic (do not use logical operators && , ||)

 ip: 10 20 -30 ip: 10 -20 -30 ip: 10 20 30

op: yes , -ve exist op: yes , -ve exist op: no , -ve exist

--

P4) try yourself, check given input time (h, m, s) values are valid or not ? use bool logic.

 if seconds and minutes must be <59 and hours must be <12

 ip: 10 4 30 ip: 15 4 30 ip: 5 44 30

 op: valid inputs op: invalid inputs op: invalid inputs

Programs using Logical operators (&& , ||)

If marks of 2 subjects scanned from keyboard, printing student is passed or failed;

 if student obtained>=50 in 2 subjects then print “passed” or else “failed”.

 ip: 51 60 ip: 30 60 ip: 90 60

 op: passed op: failed op: passed

A) using logical operator AND (&&)

for example: if (m1>=50 && m2>=50) printf(“passed”)

 else printf(“failed”);

B) using logical operator OR (||)

 for example: if (m1<50 || m2<50) printf(“failed”)

 else printf(“passed”);

above program by taking 3 subject marks.

A) using logical operator AND (&&)

for example: if (m1>=50 && m2>=50 && m3>=50) printf(“passed”)

 else printf(“failed”);

B) using logical operator OR (||)

 if (m1<50 || m2<50 || m3<50) printf(“failed”)

 else printf(“passed”);

P5) try yourself, code to find given input number(N) is in between 10 to 20 or not?

 ip: 12 ip: 25

op: yes, it is op: no, it is not

A) find using logical operator && (AND operator)

B) find using logical operator || (OR operator)

--

P6) try yourself, if three integers are input through the keyboard, then find at least one value is –ve or not?

 ip: -12 34 -42 ip: 52 64 -72 ip: 62 44 42

 op: “yes, –ve exist” op: “yes, –ve exist” op: “no, –ve is not exist”

A) find using logical operator || (OR operator)

B) find using logical operator && (AND operator)

--

 C-Family 55 if-else

Nested-If Construct
Construction of one if-statement within another if-statement is called as nested-if. The inner and outer ‘if’

may have ‘else’ part of it. Look at the following different syntaxes of nested-if construct.

The simple form of nested-if statement is

 if(condition) // outer if
 {

 if(condition) // inner if
 {

 instruction 1;

 instruction 2;

 instruction n:

 }

 }

 Let us see some more examples of nested-if with different styles

Example 1 Example 2 Example 3 Example 4

if(condition)

{ if(condition)

 instruction1;

 else

 instruction2;

}

else

{ if(condition)

 instruction3;

 else

 instruction4;

}

if(condition)

{ if(condition)

 instruction1;

}

else

{ if(condition)

 instruction2;

 else

 instruction3;

}

if(condition)

{ if(condition)

 instruction1;

}

else

{ if(condition)

 instruction2;

}

if(condition)

 instruction1;

else

{ if(condition)

 instruction2;

 else

 { if(condition)

 instruction3;

 else

 instruction4;

 }

}

There is no specific syntax for nested-if, we can write in any permutation and combinations, besides, it can

be nested as many times as we need in the program. Let us have some examples,

Demo program finding big of 3 values using nested-if style

// simple nested-if style

 if(A>B)

 { if(A>C)

 X=A;

 else

 X=C;

 }

 else

 { if(B>C)

 X=B;

 else

 X=C;

 }

 printf(“big is %d”, X);

// nested-if with logical operators

 if(A>B && A>C)

 X=A;

 else

 { if(B>C)

 X=B;

 else

 X=C;

 }

 printf(“big is %d”, X);

// in this way, by adding logical operators to

 nested-if, we can simplify the code.

 C-Family 56 if-else

Demo finding student is passed or not? Here student has 3 subjects, if he got>50 in all then pass or fail

// nested-if without using logical operators

 if(A>50)

 { if(B>50)

 { if(C>50)

 x=”passed”;

 else

 x=”failed”;

 }

 else

 x=”failed”;

 }

 else

 x=”failed;

// opposite way comparison

 if(A < 50)

 x=”failed”;

 else

 { if(B < 50)

 x=”failed”;

 else

 { if(C < 50)

 x=”failed”;

 else

 x=”passed”;

 }

 }

By using logical operators, we can simplify the nested-if

statements. But, this is not possible in all cases. The

above code can be simplified using logical operator as

 if(A>50 && B>50 && C>50)

 x=”passed”;

 else

 x=”failed”;

// opposite way comparison

 if(A<50 || B<50 || C<50)

 x=”failed”;

 else

 x=”passed”;

Demo program finding Tax from Salary of employee

 if salary<=10000 then tax is zero

 if salary>10000 and <=20000 then tax is 5% on salary

 if salary>20000 then tax is 8% on salary.

 Following code explains how to write using 3 independent if-statements and using nested-if

 if(salary<=10000)

 { tax=0;

 }

 if(salary>10000 && salary<=20000)

 { tax=5*salary/100;

 }

 if(salary>20000)

 { tax=8*salary/100;

 }

// nested-if style (simple and best)

 if(salary<=10000)

 tax=0;

 else

 {

 if(salary>10000 && salary<=20000)

 tax=5*salary/100;

 else

 tax=8*salary/100;

 }

control comes to else-part when salary is above 10000,

so no need to check salary>10000 in the above code

 C-Family 57 if-else

Checking given number in between 10 & 20 or not?

 void main()

 { int k;

 printf(“enter a number”);

 scanf(“%d”, &k);

 if(k>=10)

 { if(k<=20) // nested if construction starts here

 printf(“ yes, it is in between 10 & 20”);

 else

 printf(“no, it is above 20”);

 }

 else

 printf(“no, it is below 10”);

 }

Above code can be simplified using logical operators as

 if(k>=10 && k<=20)

 printf(“yes, it is in limits of 10-20”);

 else

 printf(“no, it is not in limits of 10-20”);

Note: for nested-if, there is no specific style or syntax, it can be in any form, it can be in any permutation

and combination, according to problem we can construct in any style. It can be nested as many times as

we want. Every outer or inner if-statement may or may not have its own else-part.

Most of the problems have alternative decisions like biggest of 4 numbers. Here every else part is nested.

First, we check A for big, if not then we check alternatively B for big, and then C, and then D. In this way

most of the problems exist, following examples may help you how alternative decisions to be written.

Demo program finding biggest of 4 numbers. Let A,B,C,D are 4 numbers

 1) writing code using 4 independent if-statements 2) using nested-if style

// using 3 independent if-statements

 if(A>B && A>C && A>D)

 { X=A;

 }

 if(B>A && B>C && B>D)

 { X=B;

 }

 if(C>A && C>B && C>D)

 { X=C;

 }

 if(D>A && D>B && D>C)

 { X=C;

 }

Note: even if first condition is true, the computer

unnecessary checks all the remaining.

// nested-if style (simplified solution)

 if(A>B && A>C && A>D)

 X=A;

 else

 { if(B>C && B>D)

 X=B;

 else

 { if(C>D)

 X=C;

 else

 X=D;

 }

 }

here, if one condition is true, then rest of the conditions are

by passed(not checked). So this is best logic.

 C-Family 58 if-else

Printing status of person using age

 If age<=12 printf(“child”);

 If age>12 && age<20 printf(“teenager”);

 If age>=20 && age<=50 printf(“young”);

 If age>50 printf(“old”);

void main()

{ int age;

 printf(“enter age :”);

 scanf(“%d”, &age);

 if(age<=12)

 printf(“child”);

 if(age>12 && age<20)

 printf(“teenager”);

 if(age>=20 && age<=50)

 printf(“young”);

 if(age>50)

 printf(“old”);

}

Instead of writing four independent if-statements,

it can be simplified using nested-if structure as

 if(age<=12)

 printf(“child”);

 else

 { if(age<20)

 printf(“teenager”);

 else

 { if(age<=50)

 printf(“young”);

 else

 printf(“old”);

 }

 }

}

Program finding how many digits exist. Let us assume input value of N lies in between 0 to 99999

 ip: 234 ip: 3456 ip: 12234 ip: 3

 op: 3 op: 4 op: 5 op: 1

 // simple-if style

 if(N<10)

 count=1;

 if(N>=10 && N<100)

 count=2;

 if(N>=100 && N<1000)

 count=3;

 if(N>=1000 && N<10000)

 count=4;

 if(N>=10000)

 count=5;

 // nested-if style

 if(N<10)

 count=1;

 else

 { if(N>=10 && N<100)

 count=2;

 else

 { if(N>=100 && N<1000)

 count=3;

 else

 { if(N>=1000 && N<10000)

 count=4;

 else

 count=5;

 }

 }

 }

 C-Family 59 if-else

Finding roots of a quadratic equation

This program to display the root values of a quadratic equation given by its coefficients say a, b and c.

Here a, b and c are input numbers.

Logic: First find the value of (b2-4ac), let it is x

 if x<0 then print "roots are imaginary"

 If x == 0 print "roots are equal", the root1 and root2 are is -b/(2*a)

 If x > 0 then print root1 = (-b+sqrt(x))/(2*a), root2 = (-b-sqrt(x))/(2*a)

About braces: observe if-block have 2 statements in the following example
complete the code to find age group and normal weight of a person as given below

 if age<=12 then say child and normal weight is 20

 if age>12 and age<=19 then say teenager and normal weight is 40

 if age>19 and age<=50) then say younger and normal weight is 60

 if age>50 then say old-age and weight is normal 70

 if(age<=12)

 { X=“child” // braces needed because two instructions exist here.

 weight=20;

 }

 else

 { if(age<=19)

 { X=“teenager”;

 weight=40;
 }

 else

 { if(age <= 50)

 { X=”younger”;

 }

 }

 }

 printf(“ age is %s , normal weight is %d ” , X, weight);

--

 float a, b, c, x, root1, root2;

 printf(“enter a, b, c :”);

 scanf(“%d %d %d”, &a, &b, &c);

 x=b*b-4*a*c;

 if(x<0)

 printf(“roots are imaginary”);

 if(x==0)

 printf(“roots are equal, roots are %f”, -b/(2*a));

 if(x>0)

 { printf(“Root1 = %f”, (-b+sqrt(x))/(2*a));

 printf(“Root2 = %f”, (-b-sqrt(x))/(2*a));

 }

}

simplifying using nested-if structure

 if(x<0)

 printf(“roots are imaginary”);

 else

 { if(x==0)

 printf(“roots are equal, roots are %f”, -b/(2*a));

 else

 { printf(“Root1 = %f”, (-b+sqrt(x))/(2*a));

 printf(“Root2 = %f”, (-b-sqrt(x))/(2*a));

 }

 }

 C-Family 60 if-else

More about Pair of Braces { }
* As per C language syntax, if-else control statement can be taken as single-compound-statement even

though they seem to be two, for example, the following if-else can be taken as single.

 if(x>y)

 big=x; single statement
 else

 big=y;

* As inner if-else statement is single, braces are not required to make into single for outer-if.

Based on this theory, we can remove braces for outer-if also. Let us see following example

 if(x>y)

 if(x>y)

 big=x; single statement
 else

 big=z;

 else single statement
 if(y>z)

 big=y;
 else single statement

 big=z;

In this way, in C, any control statement can be taken as single compound statement including nested-if,

thus above entire if-statement can be taken as single-compound-statement.

But sometimes, some people used to give braces for clarity purpose even though they are not required.

Example-3

 if(x>y && x>y)

 big=x;

 else single statement
 if(y>z)
 big=y; single statement
 else

 big=z;

Example-4

 if(a>0)

 { printf(“Hello1”);

 printf(“Hello2”);

 }
 else single statement

 { printf(“Hello3”);

 printf(“Hello4”);

 }

 C-Family 61 if-else

Following examples explains the code with and without braces
Demo program finding how many digits exist. Let us assume input value of N lies in between 0 to 99999

 ip: 234 ip: 3456 ip: 12234 ip: 3

 op: 3 op: 4 op: 5 op: 1

 with braces
 if(N<10)

 count=1;

 else

 { if(N<100)

 count=2;

 else

 { if(N<1000)

 count=3;

 else

 { if(N<10000)

 count=4;

 else

 count=5;

 }

 }

 }

 printf(“count of digits is %d” , count);

 without braces

 if(N<10)

 count=1;

 else

 if(N<100)

 count=2;

 else

 if(N<1000)

 count=3;

 else

 if(N<10000)

 count=4;

 else

 count=5;

 printf(“count of digits is %d” , count);

Demo program finding biggest of 4 numbers. Let A,B,C,D are 4 numbers

 with braces

 if(A>B && A>C && A>D)

 X=A;

 else

 { if(B>C && B>D)

 X=B;

 else

 { if(C>D)

 X=C;

 else

 X=D;

 }

 }

 without braces

 if(A>B && A>C && A>D)

 X=A;

 else

 if(B>C && B>D)

 X=B;

 else

 if(C>D)

 X=C;

 else

 X=D;

 C-Family 62 if-else

If-else-if Ladder style
This is not a special control statement; it is one kind of written style of nested-if when several alternative

decisions exist. Normal nested style leads to heavy indentation when more alternative exist.

So it is rearrangement of nested-if like a straight-line unlike crossed-line as shown in the below syntax.

This is applied, when needed to process one decision from several alternative decisions. This structure is

also called ‘if-else-if’ staircase because of its appearance. The main advantage of this structure is, easy to

code, understand, and debug. The syntax is

Normal nested-if if-else-if ladder style

if(condition1)
 instruction 1;
else
{ if(condition 2)
 instruction 2;
 else
 {
 if(condition 3)
 instruction 3
 else
 {

 }
 }
}

 if(condition 1)
 instruction 1;
 else if(condition 2)
 instruction 2;
 else if(condition 3)
 instruction 3;
 else if(condition 4)
 instruction 4;

 else
 instruction n;

By removing un-necessary braces and arranging all
nested-if statements in one column makes the if-else-if
ladder style

Here conditions are evaluated from top to down, as soon as a true condition is found, the instruction

associated with it is executed and the rest of the ladder is bypassed. If none of the conditions are true, the

final ‘else-part’ will be executed. That is, if all other condition tests fail, the final ‘else’ instruction-n will be

performed. If the final ‘else’ is not present, no action takes place.

Although, the above ‘if-else-if’ ladder is technically correct, it can lead to bit confusion to some

programmers. For this reason, the ‘if-else-if’ ladder style also written as

 If(condition 1)
 instruction 1;
 else
 if(condition 2)
 instruction 2;
 else
 if(condition 3)
 instruction 3;

 else
 instruction n;

Observe here, the nested statements are started in a new
line unlike same line as above said.

 C-Family 63 if-else

Accepting student marks of 3 subjects & printing result

 If student got <35 in any subject then print “F grade”

 If student got average>=60 print “A grade”

 If student got average>=50 && <60 print “B grade”

 If student got average <50 print “C grade”

The above left side given nested-if cross aligned, however it is readable (because few decisions exist). If the

programmer did not take care while aligning the code properly, it makes un-readable and difficult to debug.

Hence, if-else-if ladder style is always best. If more than 10 alternative decisions exist, the normal nested-if

seems to be awkward and confusion, so the ladder-style is the alternative under any case.

Above program using if-else-if ladder style (finding biggest of 4 numbers)

Normal nested-if if-else-if ladder style

 if(a>b && a>c && a>d)
 x=a;
 else
 if(b>c && b>d)
 x=b;
 else
 if(c>d)
 x=c;
 else
 x=d;
printf(“\n biggest=%d”, x)

 if(a>b && a>c && a>d)
 x=a;
 else if(b>c && b>d)
 x=b;
 else if(c>d)
 x=c;
 else
 x=d;
 printf(“ \n biggest=%d”, x);

Normal nested-if style if-else-if ladder style

void main()
{ int m1, m2, m3;
 float avg;
 printf(“\n Enter 3 subject marks:”);
 scanf(“%d%d%d”, &m1, &m2, &m3);
 avg=(m1+m2+m3)/3;

 if(m1<35||m2<35||m3<35)
 printf(“\n F grade”);
 else
 { if(avg>=60)
 printf(“A grade”);
 else
 { if(avg>=50)
 printf(“B grade”);
 else
 printf(“C grade”);
 }
 }
 }

void main()
{ int m1, m2, m3;
 float avg;
 printf(“\n Enter 3 subject marks:”);
 scanf(“%d%d%d”, &m1, &m2, &m3);
 avg=(m1+m2+m3)/3;

 if(m1<35||m2<35||m3<35)
 printf(“\n F grade”);
 else if(avg>=60)
 printf(“A grade”);
 else if(avg>=50)
 printf(“B grade”);
 else
 printf(“C grade”);
}

 C-Family 64 if-else

Finding fine amount for a late returned book at a library

The C-Family library charges a fine for every book returned late

 For first 10 days late, the fine is 5/- rupees

 For 11-20 days late, the fine is 10/-

 For 21-30 days late, the fine is 20/-

 For >=31 days late, 1/- per every day;

Write a program to accept the number of days late and display fine or the appropriate message.

Finding state of a person

This program accepts age of a person and prints his stage of life.

 age <=12  Child

 age>12 and <=19  Teenager

 age>19 and <=50  Youngman

 age>50  old

 if(age<=12)

 printf(“Child”);

 else if(age<=19)

 printf(“Teenager”);

 else if(age<=50)

 printf(“Young man”);

 else

 printf(“ old ”);

}

These two statements are same with little difference, you can follow whichever you like

void main()
{ int daysLate, fine;
 printf(“the number days late :”);
 scanf(“%d”, &daysLate);
 if(daysLate <=10)
 fine=5;
 else
 if(daysLate<=20)
 fine=10;
 else
 if(daysLate<=30)
 fine=20;
 else
 fine=daysLate;
 printf(“fine amount = %d”, fine);
}

void main()
{ int daysLate, fine;
 printf(“the number days late :”);
 scanf(“%d”, &daysLate);
 if(daysLate <=10)
 fine=5;
 else if(daysLate<=20)
 fine=10;
 else if(daysLate<=30)
 fine=20;
 else
 fine=daysLate;

 printf(“fine amount = %f”, fine);
}

 C-Family 65 if-else

Finding no.of days in a month

This program accepts month & year in a date, and find no.of days in a month

 ip: 2 2011 ip: 4 2010 ip: 12 2010

 op: 28 days op: 30 days op: 31 days

 void main()

 { int m, y, days ;

 printf(“enter month & year :”);

 scanf(“%d %d”, &m, &y);

 if(m==2)

 { days=28;

 if(y%4==0) // if leap year then month has 29 days.

 days=29;

 }

 else if(m==4 || m==6 || m==9 || m==11) // april , june , setp , nov has 30 days

 days=30;

 else

 days=31;

 printf(“ no.of days in a month = %d”, days);

 }

Checking given date is valid or not?

This program checks the given date is valid or not?

 ip: 29/2/2011 ip: 31/4/2010 ip: 1/12/2010

 op: invalid date op: invalid date op: valid date

Logic: if month & day is not in between 1-12 & 1-31, report “invalid date”

 If day is in between 1-31, check the day according to days of the month and print the result

 void main()

 { int d, m, y, bool;

 printf(“enter date :”);

 scanf(“%d%d%d”, &d, &m, &y);

 bool=1; // let us take date is valid

 if(m<1 || m>12 || d<1 || d>31)

 bool=0;

 else if(m==2 && y%4==0 && d>29) // for February and leap-year checking

 bool=0;

 else if(m==2 && y%4!=0 && d>28) // for February and non-leap year checking

 bool=0;

 else if((m==4 || m==6 || m==9 || m==11) && d>30) // for 30-days month checking

 bool=0;

 if(bool==1) printf(“date is valid”); //finally check the bool and print the output

 else printf(“date is in-valid”);

 }

 C-Family 66 if-else

Incrementing given date by 1 day (let the input date is valid-date)

 ip: 29 2 2012 ip: 31 12 2010 ip: 21 1 2010

 op: 1 3 2012 op: 1 1 2011 op: 22 1 2010

 void main()

 { int d, m, y;

 printf(“enter a valid date :”);

 scanf(“%d%d%d”, &d, &m, &y);

 d++; // incrementing day by 1-day

 // after incrementing, if ‘day’ crosses the end of month limits, then shift to next month

 if(m==2)

 { if(y%4==0 && d>29)

 { d=1;

 m++;

 }

 else if(y%4!=0 && d>28)

 { d=1;

 m++;

 }

 }

 else if((m==4 || m==6 || m==9 || m==11) && d>30)
 { d=1;

 m++;

 }

 else if(d>31)

 { d=1;

 m++;

 if(m==13)

 { d=1;

 y++;

 }

 }

 printf(“date after incrementing is %d-%d-%d”, d, m, y);

 }

Conclusion: The choice of usage of if, if-else, nested-if, if-else-if ladder is left to the programmer. There are

no specific situational suggestions which statement is to be used when and where. However, ensure that,

the written code should be correct, clear, and easy to understand. While writing code, the programmer

should remember that, the C possesses, there is always a good structured alternative control statement

exist whenever complexity rises with one control statement.

 C-Family 67 if-else

if - else linking
eg1) In C, if & else are 1:1 type, one else-statement always linked to only one if-statement in the program,

 we cannot write one else-statement for two or more if-statements, following example explains it.

 if(marks1>50)

 if(marks2>50)

 if(marks3>50)

 printf(“passed”);

 else

 printf(“failed”);

in above , the else-part joins only to the last if-statement(marks3>50), so we can’t write one else-part to

many if-statements. The solution is, we need to write else-part to every if-statement, this is as

 if(m1>=35)

 if(m2>=35)

 if(m3>=35)

 printf(“passed”);

 else

 printf(“failed”);

 else

 printf(“failed”);

 else

 printf(“failed”);

--

eg2) In some situations, where the ‘else’ is available to the outer-if and not to the inner-if , in that case, the

inner-if should be enclosed within braces { }, otherwise compiler links outer-else body to the inner-if.

Observe the following example

 if(x==1)

 if(y==2)

 printf(“ x is 1, y is 2 ”);

 else

 printf(“x is not 1”);

Here, the programmer wrote else-part to the outer-if, but compiler links to the inner-if, to avoid this logical

error, enclose inner-if within braces { }. This is as follows

 if(x==1)

 { if(y==2) // now this ‘if’ has no else part of it
 printf(“x is 1, y is 2”);

 }

 else

 printf(“x is not 1”);

 C-Family 68 if-else

About Boolean value
In C, any relational or logical expression results either 1 or 0 to determine true or false respectively. Suppose

the relation a<b is true then the operator ‘<’ gives the result 1, otherwise 0. These are known as Boolean

values in computer science.

But, In C, in place of test condition, we can use any arithmetic expression; in such case, the resultant value of

the expression decides the success/failure of the condition. If the expression results any non-zero number

then that condition is said to be true, otherwise false.

That means any non-zero value (not necessarily 1) is considered to be true, whereas zero is false.

Observe the following program output

 void main()

 { int x=0, y=1, z=10;

 if(x+y) // x+y  0+1  1  true

 printf(“ White+Yellow ”);

 if(x*y) // x*y  0*1  0  false

 printf(“ White * Yellow ”);

 if(x) // if(x)  if(0)  if(false)

 printf(“ White ”);

 if(y) // if(y)  if(1)  if(true)

 printf(“ Yellow ”);

 if(1) // if(1)  if(true)

 printf(“ Red ”);

 if(5) // if(5)  if(true)

 printf(“ Green ”);

 if(-5.34) // true

 printf(“ Blue ”);

 if(0) // false

 printf(“ Black ”);

 if(!0) // ! false  true

 printf(“ Black ”);

 if(!5) // ! true  false

 printf(“ Black ”);

 if(x&&y)

 printf(“Black”); // if(x&&y)  if(0 && 1)  if(false && true)  if(false)

 if(x||y)

 printf(“Grey”); // if(x||y)  if(0 || 1)  if(false || true)  if(true)

 }

 C-Family 69 if-else

About logical operators
When more conditions exist then they must combine using logical operators, otherwise, program may show

wrong output or syntax error. Let us observe the output of following program.

 void main()

 { int k = -5;

 if(0 < k <10)

 printf(“\n k is in between 0 & 10”);

 else

 printf(“\n k is not in between 0 & 10”);

 }

output: “k is in between 0&10”  wrong output, the evaluation of if-statement is as follows

 if(0< -5 <10) // 0 < -5  false  0

 if(0<10) // 0 < 10  true  1

 if(1)

 if(true)

Here the test condition made true hence if-block executed. When two or more relations exist, they must be

composed by logical operators. The correct code is:

 void main()

 { if(0 < k && k < 10)

 printf(“\n k is in between 0 & 10”);

 else

 printf(“\n k is not in between 0 & 10”);

 }

The condition is evaluated as if(0<k && k<10)  0<-5 && -5<10  0&&1  0 (false)

Null instruction caused by semicolon(;)
The extra semicolon(;) in the program goes to null-instruction, that is, if anybody by mistake is given extra-

semicolon then it forms as null-instruction. For example,

 a=10;

 b=20;

 ; // observe the extra semicolon

 c=30; // observe the one more extra semicolon

 d=40;

here we have 5 instructions not 4, because extra semicolons considered as null-statement by the compiler.

This extra semicolon does nothing in this example.

 C-Family 70 if-else

Null instruction as if-statement’s body
Observe the following example

void main()
{ int a=10;
 if(a<50)
 printf(“ I love C ”);

 else ;

 printf(“ I marry C ”);
}
Output: I love C, I marry C

 void main()
 { int a=10;
 if(a<50)
 printf(“ I love C “);
 else

 ;
 printf(“ I marry C ”); // this is not in else-part
 }

void main()
{ int A=10,B=20;

 if(A>B) ;

 printf(“A>B”);  compile time error
 else
 printf(“A<=B”);
 }

Output: compile time error
unfortunately here if-block contained two instructions.
1. Null instruction by semicolon
2. printf(“A>B”);

when two or more instructions exist between if & else then they
must enclosed by braces, if not, the compiler raises an error.
(Of course in our view it is only one)

 int A=10, B=20;
 if(A<B)

 ; // null-instruction

 else
 printf(“ sky is blue ”);

Output: no output displayed

 int A=10, B=20;
 if(A>B)
 ;
 else
 printf(“ sky is blue ”);

output: sky is blue

 int A=10, B=20;
 if(A>B)
 ;
 else
 ;
 printf(“ sky is blue ”);

output: sky is blue

Do not terminate any control statement’s header with the semicolon (;), otherwise, head and its body

get separated and the semi-colon will be formed as null-instruction as body. For example

 A=5;

 if(A<0) ;

 printf(“A is -VE”);
 prntf(“\nGood Night”);

op: A is –VE
 Good Night

 A=5;
 if(A<0)

 ;
 printf(“A is +VE”);
 printf(“\nGood Night”);

 C-Family 71 if-else

Check out errors, if no errors then guess the output values

 void main()
 { if(!0)
 printf(“test passed”);
 else
 printf(“test failed”);
 }

void main()
 { if(.00001)
 printf(“test passed”);
 else
 printf(“test failed”);
 }

void main()
 { int k=0;
 if(k)
 printf(“hello”);
 else
 ;
 }

 void main()
 { int k=20;
 if(k > 10)
 printf(“I am in Right”);
 else ;
 printf(“I am in Wrong”);
}

void main()
 { int k=1000;
 if(10 > k < 35)
 printf(“ I love C”);
 else
 printf(“ I marry C”);
 }

void main()
{
 if(-1.4)

 else
 printf(“test failed”);
}

void main()
{ if(-1.4)
 ;
 else
 printf(“test failed”);
}

void main()
 { int k=1;
 if(k>10)
 printf(“k is +ve”);
 printf(“k is > 10”);
 }

void main()
 { int k=1;
 if(k>10)
 printf(“ k is +ve”);
 printf(“ k is > 10”);
 else
 printf(“ k is <=10”);
}

void main()
 { int a=100,b=1;
 if(a ||b)
 printf(“Good Morning”);
 else
 printf(“Good Night”);
 }

void main()
 { int a=10, b=5, c, d;
 c=a>3;
 d=a>6 && b!=10;
 printf(“c= %d , d=%d”,c ,d);
}

void main()
{ int a=30, b=40,c;
 c =(a!=10 && b==50);
 printf(“b=%d, c=%d”, b ,c);
}

void main()
 { int a=20, b=230,c;
 c =(a==100||b>130);
 printf(“c=%d”,c);
 }

void main()
 { int k=1;
 if(k < 0)
 else
 printf(“k is +ve”);
 }

void main()
 { int k=1;
 if(k < 0)
 printf(“k is -ve”);
 else
 }

void main()
 { if(0)
 printf(“A”);
 else
 printf(“B”);
}

void main()
 { if(10)
 printf(“A”);
 else
 printf(“B”);
}

void main()
 { if(0-1)
 printf(“A”);
 else
 printf(“B”);
}

void main()

 { if(10) ;
 printf(“A”);
 else
 printf(“B”);
}

void main()

 { if(10) ;
 printf(“A”);
 }

 C-Family 72 if-else

C-Family 73 switch statement

Switch Statement
Switch is another conditional control statement used to select one option from several options based on

given expression value. This is an alternative to the if-else-if ladder when comparisons found against with

constants. The if-else-if seems to be lengthy and awkward when more comparisons exist. Switch is a good

alternative as its construction is simple and looking comfortable even if more cases found or nested.

However it does not support in all situations in which if-else-if supports. ie, it compares only against with

integral constants. In switch construct, the instructions are divided into case blocks based on logical

condition and any number of case blocks can be defined. Observe the following syntax and flow chart.

switch(expression) //  switch header

{

 case constant-1: instruction-1;

 instruction-2;

 ..…

 break;

 case constant-2: instruction-1;

 instruction-2;

 ……

 break;

 ………

 .……..

 default: instruction-1;

 instruction-2;

 ……

}

* The expression in switch() header should be an integral type value such as char, int, long int.

* The expression value compares with constant-1, constant-2,… etc, if anyone matches then the control

jumps into associated case block and executes all the instructions within it, later comes out by break.

The break throws the control out of switch statement. In other words, keyword break used to come out of

switch after execution of selected case block. However, break is an optional statement. If it is not present at

end of case-block, the control enters into next case block even though its constant value differs.

* The case constants may not be in ascending or descending order. The two or more case constants may be

associated with single block.

* The default block executes when no case is matched. The default is optional block and generally it is used

to handle input errors.

* In case block of switch, we can write any other control statement, sometimes it can be nested

* remember, this is an alternative statement of if-else-if ladder style, but this is used only when comparisons

made against with constants. This is the limitation of this statement.

C-Family 74 switch statement

Printing single digit value in true English words
 input: 3
output: three
 void main()
 { int digit;
 printf(“Enter any single digit:”);
 scanf(“%d”,&digit);

 switch(digit)

 { case 0: printf(“zero”);
 break;
 case 1: printf(“one”);
 break;

 case 9: printf(“nine”);
 break;
 default: printf(“Invalid input”);
 }

}
 Here the value of digit is compared with given case constants 0, 1, 2, 3,… one by one, if any case matches

then the corresponding printf() prints the English word.

 If no case matches with the given value, then the default block executes and we get “Invalid input”.

Generally, default block used to handle errors like “invalid-input” and other things.

 Suppose the input is 4, then the “case 4:” matches and executes printf(“four”). Later control comes out

when break gets executed.

 The above program can be written using if-else-if ladder form as shown below.

 void main()

 { int k ;

 printf(“Enter a digit:”);

 scanf(“%d”,&k);

 if(k==0)

 printf(“zero”);

 else if(k==1)

 printf(“one”);

 else if(k==2)

 printf(“two”);

 ……

 else if(k==9)

 printf(“nine”);

 else

 printf(“Invalid input”); // like default block

 }

The above two programs generate exactly same result. However, as you might notice that the first program

is easier to write, understand and modify. Structure of switch statement is more readable even if it is nested

2 or 3 times.

C-Family 75 switch statement

Demonstration of break usage in switch
Note: If break is not given at the end of case block, the control enters into next case block even though it

conveys different case-constant-value.

 void main()

 { int a;

 printf(“Enter a number 10/20/30:”);

 scanf(“%d”, &N);

 switch(N)

 { case 10: printf(“red”); // observe “break” not given

 case 20: printf(“green”);

 break;

 case 30: printf(“blue”);

 default: printf(“black”);

 }

 }

if input: 10  red green (output of case-10 and case-20)

if input: 20  green (output of case-20)

if input: 30  blue black (output of case 30 and default)

if input: 40  black (output of default)

if input: 50  black (output of default)

if input: 0  black (output of default)

Finding number of days in a given month date
This program scans month & year in a date, and prints no.of days in that month

 void main()

 { int m,y;

 printf(“enter month & year :”);

 scanf(“%d%d”, &m, &y);

 switch(m)

 { case 2: days=28;

 if(y%4==0)

 days=29;

 break;

 case 4:

 case 6:

 case 9:

 case 11: days=30;

 break;

 default : days=31;

 }

 prinstf(“no.of days is %d”, days);

 }

Here case blocks 4, 6, 9, 11 are associated with only one instruction, days=30. Thus two or more cases can

be associated with one block of code.

C-Family 76 switch statement

Testing whether a given alphabet is vowel/consonant
Note: two or more cases may associate with one block of instructions.

 void main()

 { char ch;

 printf(“Enter any lower case alphabet:”);

 scanf(“%c”,&ch);

 switch(ch)

 { case ‘a’:

 case ‘e’:

 case ‘i’:

 case ‘o’:

 case ‘u’: printf(“It is a vowel “); break;

 default: printf(“It is a consonant”);

 }

 }

Here all case blocks associated with only one instruction, which is printf(“it is a vowel”); Thus, for any input

vowel, the same message “It is vowel” is displayed. Otherwise, we’ll get the “It is a consonant”.

Conditional operator (?)
This is the simple conditional operator used to process one instruction from a given two instructions. It is an

alternative to the simple if-else construct when its body consists of single instruction. It works like inline

version of if-statement (single line). This conditional operator also called ternary operator since it takes

three operands.

The general syntax is: condition? expression1: expression2;

here, the condition is true then the expression1 is evaluated (executed) otherwise expression2 is evaluated.

eg1: big = X>Y ? X : Y; this is equal to: if(X>Y) big=X; else big=Y;

eg2: X>Y ? printf(“X is biggest”) : printf(“Y is biggest”);

eg3: diff = A>B ? A-B : B-A ; Here, if A>B is true then A-B is assigned to diff, otherwise, B-A is assigned.

 This is equivalent to

 if(a>b) diff=a-b;

 else diff=b-a;

The ternary operator can be nested, but it makes confusion to the programmer, therefore, it is suggested to

use only when two way decisions exist and their expressions are simple.

Let us see the following example, how nesting makes complexity to the programmer. Program prints the

biggest of three numbers, which are located in variables a, b, c.

 void main()

 { int a,b,c;

 printf(“\n Enter any three numbers:”);

 scanf(“%d%d%d”, &a,&b,&c);

 a>b ? (a>c ? x=a : x=c) : (b>c ? x=b : x=c); // observe the complexity in nested usage

 printf(“Big = %d”, x);

 }

In the above program, as conditional operator nested, it seems to be complex and unreadable. So when

nesting takes place then it is better to use if- statement.

C-Family 77 switch statement

goto Statement
It is used to jump the control from one location to another location within a function. This unconditional
control statement diverts the control to a specified location where the label is mentioned. Using this, the
control can be moved to forward or backward or in any order in the function.

The early high level languages such as ALGOL, FORTRAN were influenced by a combination of if & goto
statements. The goto was considered to be a powerful statement as any problem (program) can be solved
using this. But program becomes complex, if the code is big and many goto statements are used.

As a result this statement fell out of favor some years ago, hence several alternative rich set of control
statements are provided in modern languages such as switch, while, for, do-while, break, continue, and
return. However, for some kind of situations like getting out of nested loops, to solve recursive like programs
using loops, …etc. We cannot get a solution using these rich set, so, goto occasionally has its uses.

Syntax: goto label; // Here, the label is a valid identifier followed by a colon, indicates a location to where

the control has to be jumped using goto. Label name follows the rules of a variable name.

 void main()

 { printf(“India\n”);

 goto end; //observe here, the control will be transferred to “end”

 printf(“American\n”);

 printf(“Australia\n”);

 end: // here ‘end’ is a label

 printf(“Russia\n”);

 printf(“Japan\n”);

 }

Output: India

 Russia

 Japan

When “goto end” is executed, the control simply jumps over to label “end” and follows next instructions.

Another demo program , how the control jumps using goto

By observing the above code, we can say that, goto is a powerful statement as control can be moved to any

place but it led to unreadable and complex because of many goto used.

void main()
 { printf(“Red\n”);
 goto one;
two: printf(“Green\n”);
 printf(“Blue\n”);
 printf(“Yellow\n”);
 goto end;
one: printf(“White\n”);
 printf(“Cyan\n”);
 goto two;
end:
}

C-Family 78 switch statement

Demo program for identifier “label”
The identifier label is not like a variable and it does not occupy any space in machine code file, instead it

works like a line indicator in the program. Generally, after compilation of a program, every instruction is

associated with a line number in the machine code, it tells the sequence of instructions in the program. Let

us see a program, how it creates line numbers in the machine code file.

Unconditional control transfer
main()

{ wish: // line1

 printf(“Hello, how are you?\n”); // line2

 goto wish;

}

In this example ‘wish’ is the label name, which specifies the line number for the goto statement, here it is

line1 .When the ‘goto wish’ executes, resulting diversion of control back to the location wish. Here, the

execution of printf() repeats endlessly.

 Hello, how are you?

 Hello, how are you?

 Hello, how are you? ….

 :

(To stop or kill the indefinite loop of this program, we have to press the keys control +break or control+c (in

Dos), alt+control+del (in Windows) or other keys provided by o/s)

As we got to know that, goto is an unconditional (condition less) control statement, therefore, it is always

association with if-statement to provide the conditional control transfer.

The following program prints “Welcome” message 10 times

 void main()

 { int counter=1; //take a counter with 1, for counting 10 times

 wish:

 if(count<=10)

 { printf(“Welcome to C-Family, Vijayawada\n”);

 counter++; // increment the counter

 goto wish; // repeat until counter <=10

 }

 }

Here, in this program, the variable counter is used to count the number of times the printf() is repeated.

After completing 10 cycles, the given if-condition will fail and thus the goto statement is skipped, which

turns to end of the program.

Code with labels Code after compilation

void main()
{ printf(“Red”);
 goto one;
 two: printf(“Blue”);
 goto end;
 one: printf(“Green”);
 goto two;
 end: printf(“end of program”);
}

void main()
{ line1: printf(“Red”);
 line2: goto line5;
 line3: printf(“Blue”);
 line4: goto line7;
 line5: printf(“Green”);
 line6: goto line3;
 line7: printf(“end of program”);
}

C-Family 79 switch statement

Program displays the given multiplication table up to 10 terms.
 If input is 8

 then output is:

 8*1=8

 8*2=16

 8*3=24

 void main()

 { int i=1; // take a counter variable ‘i’ and set to 1

 int n; // ‘n’ holds the table number

 printf("\nEnter the table number:");

 scanf("%d",&n);

 nextRow: // setting label for next cycle

 if(i<11)

 { printf("\n %d * %d = %d", n, i, n*i); // printing terms

 i++; // incrementing ‘i’ to generate next term

 goto nextRow; // go back to print next term

 }

 }

Program to print 1 to 20 tables (extension to above program)

 void main()

 { int n=1; // ‘n’ for table-numbers

 int i; // ‘i’ to print 1-10 terms of each table

 nextTable:

 if(i<21)

 { i=1;

 nextRow:

 if(i<11)

 { printf("\n %d * %d = %d", n, i, n*i); // printing terms

 i++; // incrementing ‘i’ for generate next term

 goto nextRow; // go back to print next term

 }

 n++; // incrementing n for next table

 goto nextTable;

 }

 }

 C-Family 80 Loops

Control Looping Statements
In programming, it is common process to repeat instructions more than one time. Using goto statement,

it can be achieved, however, it is an unstructured control transfer statement, which will cause a severe

programming complexity upon nested usage or if their number increases. To eliminate such complexity, C

provides some structural control statements for looping such as while, for and do-while.

These 3 structures manage the execution sequence over some set of instructions repeatedly until a certain

condition is satisfied

These loop control statements are used to execute some set of instructions repeatedly until a given test

condition is attained. Each loop structure has its own style and provides a convenience to the user. The user

can select any loop control statement in the program according to the requirement and convenience and

there are no specific situational suggestions, which loop to use when and where.

All loop control statements are attached with a test-condition and a body. This body contains one or more

instructions, which are to be executed repeatedly until the test condition becomes false. We can write any

type of instructions or even another control statement with in this body.

The while loop
This is a simple loop statement with a terminating condition and associated block of instructions. Syntax is,

 while (test condition)

 {
 instruction 1; false

 instruction 2;

 ------- true

 Instruction N;
 }
 Instruction N+1;
 instruction N+2;

In the while loop, initially, the test-condition is checked and if it is true, the control transfers into the loop-

body and process the instruction-1, instruction-2,… and instruction-N. Later, control jumps back to the

beginning of loop for next cycle i.e., again the test-condition is checked and if it is true then the control

re-enters into the loop-body and executes all instructions within it. This process continues as long as test-

condition becomes false.

If the test-condition becomes false then the control jumps out of loop-body and follows the bottom

instructions “instruction n+1, instruction n+2 ….”

If loop body has only one instruction, the pair of braces {} are optional. This is as said in if-statement.

If loop-body has more instructions exist, they must enclose by pair of braces{}.

The test-condition must fail after certain number of times. Otherwise, it goes to infinite loop.

Don’t terminate loop header with semi-colon, otherwise, the head & body gets separated.

The following examples explain the different formats of while-loop usage

Condition

 Instruction 1;

 Instruction 2;

 Instruction N;

 C-Family 81 Loops

Printing 1 to 10 natural numbers using while loop (op: 1 2 3 4 5 6 7 8 9 10)

step1. take ‘i’ as loop variable with 1 as starting value, here ‘i’ works as counter for 1 to 10

step2. print ‘i’ value as output

step3. increment ‘i’ by 1

step4. repeat step2 and step3 until i<=10

step5. stop.

 void main()
 { int i=1; // initialization of loop variable with 1

 while(i<=10) // loop begins here
 { printf(“%d ”, i); // printing ‘i’ value on the screen

 i++; // incrementing ‘i’ by 1
 }

 printf(“\n this is end of loop ”);

 }

Generally, programmers always take loop variable name as ‘i’ , because it shows index(i) value.

Printing 1 to 10 and 10 to 1 using while loop

Write two loops, loop after loop, first loop prints 1 to 10, and second loop prints 10 to 1
 void main()
 { int i=1; // initialization of loop variable with 1

 while(i<=10) // loop begins here
 , printf(“%d ”, i); // printing ‘i’ value on the screen

 i++; // incrementing ‘i’ by 1
 }

 i=10;
 while(i>=1) // loop begins here
 , printf(“%d ”, i); // printing ‘i’ value on the screen

 i--; // decrementing ‘i’ by 1
 }
 }

Let see what happens if loop header terminated by semicolon (;) ?

Do not terminate the loop header with semicolon, otherwise the head and body gets separated and an

empty loop is formed with a null instruction. The semicolon forms as null instruction as loop body.

The following example gives the clarity how the semicolon formed as null instruction as loop body.

Observe semicolon at the end of loop-
header

Let us imagine this semicolon in the next line
and how it forms as null instruction as loop body

 i=1;

 while (i<=10) ;

 {
 printf(“%d “, i);
 i++;
 }

 i=1;
 while(i<=10)

 ;

 {
 printf(“%d “, i);
 i++;
 }
this loop goes infinite, because ‘i’ is not incrementing
towards to 10. The empty loop repeats again and again

 C-Family 82 Loops

Printing numbers between two given limits

 ip: 14 45

 op: 14 15 16 17 18 …..45

step1: take lower & upper as input variables and scan data from KB(keyboard)

step2: take ‘i’ as loop counter and initialize with lower limit (i=lower)

step3: print ‘i’ value

step4: increment ‘i’ by 1, to generate next number

step5: repeat step3 and step4 as far as i<=upper

step6: stop.

 void main()

 { int lower, upper, i ;

 printf(“\n enter lower and upper limits :”);

 scanf(“%d%d”, &lower, &upper);

 i=lower; // begins ‘i’ with lower limit
 while(i<=upper) // loop to repeat up to upper limit
 { printf(“%d\t “, i);

 i++;
 }
}

Printing 1, 10, 100, 1000, 10000, 1000000 for 6 times [do not use pow() fn]

1. take ‘i’ as loop variable with start value 1, here ‘i’ works as loop variable as well as to print output values

2. print ‘i’ value as output

3. multiply 10 to ‘i’, to generate next output value

4. repeat step2 and step3 as far as i<=100000

5. stop.

 void main()

 { int i=1;

 while(i<=1000000)

 , printf(“%d “, i);

 i=i*10;

 }

 }

Printing 1000000, 100000, 1000, 100, 10, 1 for 6 times

1. take ‘i’ as loop variable with starting output value 1000000

2. print ‘i’ value as output

3. divide ‘i’ by 10, to generate next output value

4. repeat step2 and step3 until i>0

5. stop.

 void main()

 { int i=1000000;

 while(i>0)

 , printf(“%d “, i);

 i=i/10;

 }

 }

 C-Family 83 Loops

Printing 1, 2, 4, 8, 16, 32 ------ for 10 times [do not use pow() fn]

1. take ‘i’ to repeat loop for 10 times

2. take ‘p’ to generate values 1, 2, 4, 8, 16, … etc [20 , 21 , 22 , 23 , 24 , 25 ...]

3. set i=1, p=1 // starting values of i & p

4. print(p)

5. multiply 2 with ‘p’, to get next output of 2i value

6. increment loop variable ‘i’ by 1

7. repeat step4 to step6 until i<=10

8. stop.

 void main()

 { int i=1, p=1;

 while(i<=10)

 { printf(“%d “, p);

 p=p*2;

 i++;

 }

 }

Printing N, N/2, N/4, N/8, …1.

 ip: 100

 op: 100 50 25 12 6 3 1

1. read N value from keyboard

2. print N value

3. cutdown N to N/2, to get next value of output

4. repeat step2, step3 until N>0 and stop

 void main()

 { int N;

 printf(“enter N value :”);

 scanf(“%d”, &N);

 while(N>0)

 { printf(“%d “, N);

 N=N/2;

 }

 }

Printing odd numbers for first N terms

 ip: 10

 op: 1 3 5 7 9 11 13 15 17 19

 void main()

 { int i=1, N;

 printf(“enter number of terms to print :”);

 scanf(“%d”, &N) // scanning N as no.of terms to print

 while(i < 2*N) // N
th

 term of odd series ends with 2*N

 , printf(“ %d “, i); // printing odds one by one

 i=i+2; // incrementing i by 2 to get next odd value

 }

 }

 C-Family 84 Loops

Printing odd numbers from N to 1 in reverse order

Note: The input value N may be odd or even entered by the user, for example

 ip: 15 ip: 24

 op: 15 13 11 ….1 op: 23 21 19 …..1

 void main()

 { int N;

 printf(“enter n value :”);

 scanf(“%d“, &N);

 if(N%2==0) // if input N is even then change to odd, because we have to start with odd value.

 N=N-1; // if input N is even like 24, then changing to next odd 23

 while(N>0) // now printing using loop from N to 1

 { printf(“%d ”, N); // printing odds one by one

 N=N-2; // decrement N to N-2 to get next odd number of next cycle

 }

 }

The above code can be written in other way as

[Here each number from N to 1 checked in favor of oddness and printing it on the screen]

 while(N>0) // loop to print odd numbers up to 1.

 { if(N%2 == 1) // if N is odd then print it

 printf(“%d ”, N); // remember braces not given

 N--; // decrement N towards to 1.

 }

 input: 25

 Sample run 25%2==1  1==1  true  prints 25 as output

 24%2==1  0==1  false skips

 23%2==1  1==1  true  prints 23 as output

 22%2==1  0==1  false  skips

 21%2==1  1==1  true  prints 21 as output

 20%2==1  0==1  false  skips

 19%2==1  1==1  true  prints 19 as output

Printing 10 numbers before and after of a given N

 ip: 36

 op: 26 27 28….34 35 36 37 38… 45 46

 void main()

 { int i , n;

 printf(“\n enter n value :”);

 scanf(“%d”, &n); // scanning ‘n’ from keyboard

 i=n-10; // start from n-10

 while(i<=n+10) // repeat loop up to n+10

 { printf(“%d “, i);

 i++;

 }

 }

 C-Family 85 Loops

Generate and print list of numbers from N to 1

Here N is input from keyboard and print the list of numbers as long as the value of N >1.

if N is even then next number of N is → N/2 (half),

if N is odd then next number of N is → 3N + 1

if input N is 13, then we have to print like: 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

 void main()

 { int N;

 printf(“enter N value :”);

 scanf(“%d”, &N);

 while(N>1)

 { printf(“%d “, N);

 if(N%2==0) // if N is even then reduce N=N/2

 N=N/2;

 else

 N=3*N+1; // if N is odd then raise N=3*N+1

 }

 }

Printing values of 1, -2, 3, -4, 5, -6, 7, …N times

1. take a loop variable ‘i’ for 1 to N do.
2. take a variable ‘s’ with 1, and change its value alternatively to +1, –1, +1, –1,… in the loop.
 for this multiply ‘s’ with –1 in the loop, so that the sign changes alternatively.
3. print s*i value in the loop, then s*i values are: 1, -2, 3, -4, 5, …
 In the loop, the values of ‘i’ and ‘s’ are
 i  1, 2, 3, 4, 5, 6, 7, …
 s  1 , -1, 1, -1, 1, ,-1, 1, …
 s*i  1, -2, 3, -4, 5,
 void main()
 { int i, s, n;
 printf(“enter n value:”);
 scanf(“%d”, &n);
 i=s=1;
 while(i<=n)
 { printf(“%d “, s*i);
 s = -1*s;
 i++;
 }
 }

Printing 1 to 10 numbers by skipping 5

op: 1 2 3 4 6 7 8 9 10

 void main()

 { int i=1;

 while(i<=10)

 { if(i!=5) // if ‘i’ value is not 5 then print(i)

 printf(“%d “, i);

 i++;

 }

 }

 C-Family 86 Loops

Printing multiplication table up to 10 terms for a given input N

 ip: 9
 op: 9*1=9
 9*2=18
 9*3=27

 9*10=90
Logic: print(N*i) for 10 times where i=1 to 10

 void main()
 { int n , i;
 printf(“enter table number :”);
 scanf(“%d”, &n);

 i=1;
 while(i < 11) // loop to print 10 terms
 { printf(“\n %d * %d = %d”, n, i, n*i);
 i++;
 }

 }

Printing factors of a given number (N)

 ip: 18
 op: 1 2 3 6 9 18.
Logic: Here the N value can be anything, to know its factors, divide N with all possibility numbers from
1,2,3,…N, which ever divides the N then it will be a factor, so print it on the screen. This is as shown below
 Let N is : 15
 check as : 15%1==0  true print(1) as a factor

 15%2==0  false skips

 15%3==0  true print(3) as a factor

 15%4==0  true skips

 15%5==0  true print(5) ……….

 void main()

 { int i , N;

 printf(“\n enter n value :”);

 scanf(“%d”, &N);

 i=1; // checking for factors starting from 1.

 while(i<=N) // loop to check N with all possibilities 1,2,3,4…for finding factors
 { if(N%i==0) // checking N, whether it is divisible or not
 printf(“%d\t “, i); // if N is divisible then print ‘i’ as factor

 i++;

 }

 }

 C-Family 87 Loops

Finding small factor of N (excluding ‘1’ as factor)

 ip: 15 ip: 18 ip: 35 ip: 17

 op: 3 op: 2 op: 5 op: 17

logic: for small factor, divide N with 2,3,4,5,… upto N, that is check with all possibilities from 2 to N, but

whichever divides first then it will be small factor and stop the loop.

 void main()

 { int i, N;

 scanf(“%d”, &N);

 i=2; // checking for factors starting from 2

 while(i<=N) // we have to check up to N.

 { if(N%i==0) // verifying N with each number in ‘i’.

 break; // break stops the loop when divides.

 i++;

 }

 printf(“ small factor is %d “, i);

 }

Here N verified repeatedly for small factor from 2 to N, meanwhile, if it is divided with any number then loop

stops by break and prints it as small factor. The break statement stops the loop and moves the control out of

loop-body, which is as above shown arrow. This program can be simplified as

 i=2;

 while(N%i!=0) i++; // the loop stops when ‘i’ divides the N

 printf(“small factor is %d”, i);

Finding biggest factor of N (excluding N as a factor)

 ip: 15 ip: 18

 op: 5 op: 9

Hint: Generally, for any number, the possible factors lies in range 1,2,3,…N/2 (exclude N). That is, there

should not be factors found beyond N/2. For example, if we take 100 then possible factors are 1,2,3, …50.

The value 100 never divides with 51, 52, 53,…,98, 99, so it is useless to check beyond N/2.

In this program, as we want big factor, it is wise to check from N/2 to 1 (in reverse order)

 void main()

 { int i,n;

 scanf(“%d”, &n);

 i=n/2; // checking for factors starting from n/2

 while(i>0) // check with all possibilities up to 1.

 { if(n%i==0) // verifying whether ‘n’ divides or not ?

 break; // break stops the loop, when divided.

 i--;

 }

 printf(“ big factor is %d “ , i);

 }

Above program can be written in simple form as

 i=n/2;

 while(n%i!=0) i--; // the loop stops when ‘i’ divides the N

 printf(“big factor is %d”, i);

 C-Family 88 Loops

 printing common factors of two numbers

 ip: 12 18 ip: 10 30

 op: 1, 2, 3, 6 op: 1, 2, 5, 10

 step1: take two input values into x , y

 step2: find smallest of x , y // because common factors exist from 1 to smallest of x,y

 if(x<y) small=x

 else small=y;

 step3: repeat the loop from 1 to ‘small’ (i = 1 to small)

 if(x%i==0 && y%i==0)

 print(‘i’ as common factor)

note: code the program yourself

printing biggest common factor (GCD) of two numbers

 ip: 12 18 ip: 10 30

 op: 6 op: 10

 step1: take two values into x,y

 step2: find smallest of x,y // because biggest common factor exist from small to 1

 step3: repeat loop from ‘small’ to 1 (i=small to 1)

 if(x%i==0 && y%i==0)

 print(‘i’ as common factor)

 break; // whichever divides for first time then it will be GCD, so stop the loop

 step4: stop

Checking given number is perfect or not?

perfect: if sum of all factors is equal to given N then it is said to be perfect. (don’t take N itself as a actor)

logic: Check for factors from 1 to N/2 and add all divisible to variable ‘sum’.

 For example: 6 (1+2+36), 28(1+2+4+7+1428)

 ip: enter N value: 6 ip: enter N value: 7 ip: enter N value: 28

 op: yes op: no op: yes

 step1: take variables N, sum and i;

 step2: scan N // because biggest common factor exist from small to 1

 step3: sum=0 , i=1,

 step3: repeat loop ‘i’ from 1 to N/2

 if(N%i==0)

 sum=sum+i; // adding all factors

 step4: if sum==N then print(“ N is perfect number”);

 else print(“ N is not perfect number”);

 step5: stop.

**Printing given number is prime or not?

Write a program to find the given number N is prime or not?

 ip: N = 17 ip: N = 18

 op: yes, it is prime op: no, it is not prime

Prime number does not divide with any number except 1 & N itself. So, to know primness of N, check the N

by dividing from 2,3,4,….N/2. If not divided with any of these numbers then it is said to be prime. Based on

this concept, a beginner may write prime logic as bad as

 C-Family 89 Loops

 i=2;

 while(i <= N/2)

 { if(N%i==0)

 printf(“\n not prime”);

 else

 printf(“\n prime”);

 i++;

 }

 ip: N=10 (many outputs)

 op: not prime // when 10%2==0 is true

 prime // when 10%3==0 is false

 prime // when 10%4==0 is false

 not prime // when 10%5==0 is true

Here we get many outputs and it is wrong, because prime-ness can be declared only after checking with all

numbers from 2 to N/2. Here we have to take output decision only after completion of loop(not inside loop),

So, to solve this problem, better to use Boolean logic, there several other logics to find prime-ness, but this

Boolean logic is standard and best, the code is as given below

 void main()

 { int n, i, bool ;

 printf(“enter N value :”);

 scanf(“%d”, &N);

 i=2, bool=1; // assume ‘N’ is prime, so take bool as 1 (true).

 while(i<=N/2)

 { if(N%i==0)

 { bool=0; // here N divided, therefore N is not prime, so set bool to 0 (false) and stop

 break;

 }

 i++; // if N is not divided then check with next ‘i’ value until i<=n/2

 }

 if(bool==1) printf(“prime”); // printing output, after completion of loop

 else printf(“not prime”);

 }

Logic2: Count all factors of N, that is, divide N with all numbers from 1 to N and count them, if factors

count==2 then say it is “prime” or else “not prime”. This is simple logic but execution takes much time

than above bool logic, because it is unnecessary checking with all numbers if once N is divided. (here we

are not stopping by break)

 count=0; i=1;

 while(i<=N) // loop to count all factors between 1 to N

 { if(N%i==0)

 count++; // increments ‘count’ when N is divided with ‘i’

 i++;

 }

 if(count==2) printf(“not prime”);

 else printf(“prime”);

 C-Family 90 Loops

Summing 2+2+2+2+ …. N times (do not use multiplication operator)

Logic: take a variable ‘sum’ with zero, and repeatedly add 2 to ‘sum’ for N times.

step1: take variable ‘sum’ to store sum of 2+2+2+ … for N times

step2: set sum=0 to clean the garbage

step3: add ‘2’ to sum, this is as: sum=sum+2

step4: repeat step3 for N times

step5: print (sum)

Look at the picture, how 2 is added to ‘sum’ in cycles

 void main()

 { int sum , i , N ;

 scanf(“%d”, &N);

 i=1, sum=0;

 while(i<=N)

 { sum=sum+2;

 i++;

 }
 printf(“sum is %d”, sum);
 }
Note: if sum is not initialized to 0 in the beginning, then it contains garbage value, so the instruction
sum=sum+2 executes for first time as “sum=GarbageValue+2”. So, set sum=0 at beginning of loop.

Finding sum of series of 12+22+32+42+52 …..+102

Prove that sum of 12+22+32+42+52 …..+102 is equal to 385 or not?
output: yes/no
Logic: take ‘sum’ with zero, repeatedly add i2 value to sum for 10 times, where i=1 to 10
 after finding sum, compare with 385 for equality.

void main()
{ int i, sum;
 sum=0; i=1;
 while(i<=10) // loop to add up to 10 terms

 { sum=sum + i*i;
 i++;
 }
 if(sum==385) printf(“program is correct”);
 else printf(“program has some logical mistakes”);
}

Finding sum & product of 1 to n. (1+2+3+4…+n; 1*2*3*4*…*n)

void main()
{ int i, n, sum, product;
 printf(“enter n value :”);

 scanf(“%d”, &n);
 sum=0, product=1, i=1;
 while(i<=n)
 { sum=sum+i;
 product=product*i;
 i++;
 }
 printf(“\n sum=%d \n product=%d”, sum, product);
 }

sum = 10 , when n=5

sum = 0+2+2+2+2+2

sum = 0+2+2+2+2

sum = 0+2+2+2

sum = 0+2+2

sum = 0+2

sum = sum+2

sum = 0+1+2+3+4

sum = 0+1+2+3

sum = 0+1+2

sum = 0 + 1

sum = sum+i

 C-Family 91 Loops

Finding sum of given N values

This program accepts numbers one by one from keyboard until last input value is 0, when zero is entered

then stops scanning and prints sum of all values.

 ip: 11⤶ 3⤶ 44⤶ 30⤶ 23⤶ 0⤶

 op: sum = 111

 void main()

 { int n, sum=0 ;

 while(1)

 { printf(“enter a value * zero to end + :”);

 scanf(“%d”, &n); // scanf() must be written inside loop, to scan value by value until n==0

if(n==0) break;
sum=sum+n; // summing value by value

 }
 printf(“\n sum=%d ”, sum);
 }

Finding sum of 20+ 21+22+……+2n without using pow() function

 ip: n=5
 op: sum=31
 void main()
 { int n, sum, p, i;
 printf(“enter n value :”);
 scanf(“%d”, &n);
 sum=0; p=1; i=1; // here ‘i’ values are 1,2,3,4, …. N, the ‘p’ values are 1,2,4,8,16,32, ….

 while(i<=n) // loop to add ‘n’ terms

 { sum=sum + p; // adding 2
i
 values to sum

 p=p*2; // generating next 2
i
value

 i++;
 }
 printf(“\n sum=%d”, sum);
 }

Finding sum of series of x1+x2+x3+x4+ ….xn
(without using power function)

 ip: 3 5 (x=3, n=5)
 op: 3+9+27+81+243  363
 void main()
 { int i=1, n, sum=0, x, p;
 printf(“enter x , n value :”);
 scanf(“%d%d”, &x, &n);
 p=x; // first value of p is x

1
 while(i<=n) // loop to add up to ‘n’ terms

 { sum=sum + p; // adding x
1
, x

2
, x

3
 … to sum

 p=p*x; // to generate next x
i
value

 i++;
 }
 printf(“\n sum=%d”, sum);
 }

 C-Family 92 Loops

Finding factorial of N. (1*2*3*4*…*N)

Here the formula N(N+1)/2 is not used to get the sum of all terms
 ip: N=4
 op: product=24 (1*2*3*4)

void main()
{ int i, N, fact;
 printf(“enter N value :”);

 scanf(“%d”, &N);
 fact=1; i=1;
 while(i<N)
 { i++;
 fact=fact * i ;
 }
 printf(“\n factorial = %d”, fact);
 }

Finding xy value based on given input values (x,y)

 ip: 2 3
 op: 8 (2*2*2)

1. scan input values to x, y
2. take variable ‘p’ to store value of x*x*x … for y-times
3. initialize ‘p’ with 1 to clean the garbage
4. now repeatedly multiply ‘x’ to ‘p’ for y-times to get xy value
5. print(p)
6. stop

void main()
{ int i, x, y, p=1;
 printf(“enter x , y values :”);
 scanf(“%d%d”, &x, &y);
 while(i<=y) // loop to multiply y-times
 { p=p*x;
 i++;
 }
 printf(“\n x^y =%d”, p);
}

X1/1! + X2/2! + X3/3!..... N times [do not use pow() fn]

 ip: x=3, N=5
 op: sum= 17.4 [3.0 + 4.5 + 4.5 + 3.37 + 2.02  17.4]
1. Take ‘i’ for the looping 1 to n times.
2. Take a variable ‘p’ and generate its values to x1, x2, x3, x4, x5, …
 for this multiply ‘x’ to the ‘p’ to get next value.
3. Take a variable ‘fact’ and generate its values to 1!, 2!, 3!, 4!, …
 for this multiply ‘i’ to the ‘fact’ to get next factorial value.
4. Take sum and add all these ‘p/fact’ values, this is like sum=sum + p/fact;
 void main()
 { int i, fact, x, p, n;
 float sum;
 printf(“enter x n value :”);
 scnaf(“%d%d”, &x, &n);
 i=1, fact=1, sum=0, p=x;

 product = 8, when y=3

 product = product * x;

 product = 1*2*2*2;

 product = 1*2*2

 product = 1*2

fact = 24, when n=4

fact = 1*2*3*4

fact = fact * i

fact = 1 * 2

fact = 1*2*3

 C-Family 93 Loops

 while(i<=n)
 { sum = sum + (float) p/fact;
 p=p*x;
 i++;
 fact=fact*i;
 }
 printf(“sum = %f”, sum);
 }

Finding sine series value: sin(x) x1/1! - x3/3! + x5/5! – x7/7! … up to 10 terms

 ip: x=3, N=5
 op: sum=0.1453 [(3.0) + (-4.5) + (2.025) + (-0.4339) + (0.05424)]

 void main()
 { int i, fact, sign;

 float x, sum, p;
 printf(“enter sign(x) value :”);
 scanf(“%f”, &x);
 i=fact=1; p=x; sign=1; sum=0;
 while(i<20) // adding 10 terms (not 20, because ‘i’ is incrementing by 2)

 { sum=sum+ sign* p/fact;
 sign=-1*sign; // changing ‘sign’ for next term

 p=p*x*x; // getting next x
i
 value

 i=i+2; // getting next odd number

 fact=fact*(i-1)*(i); // getting next factorial value

 }
 printf(“\n sum =%f”, sum);

 }

Printing prime factors of given N (The product of factors should be equal to N)

 ip: N=100

 op: 2 2 5 5

 step1: divide N with first possible factor 2, here the number 2 is prime.

 if N is divided with 2 then print(2) as prime factor and decrement N to N/2.

 step2: repeat step1 as long as ‘2’ divides the N.

 step3: Now take 3 and proceed as long as 3 divides the N, as said in step1. Of course ‘3’ is also prime.

 step4: Now take 4, we know 4 is not prime, but 4 will not be divided the N because we already did with 2

 before, so there should not be 2 multiples left behind in N. [you may ask one question, why to divide

 with 4 when it is not prime, because it is difficult to take only primes for checking, taking only primes

 is another problem. So continuously/blindly divide the N with 2,3,4,5,6,7,8,9 ….

 step5: repeat this process until N>1

 i=2;

 while(N>1)
 { if(N%i==0)
 { printf(“%d “, i);
 N=N/i;
 }
 else i++;
 }

 C-Family 94 Loops

Printing prime factors of given N without duplicates

This process is same as above program but it prints factors only once. (not like 2, 2, 5, 5)

 ip: N=100

 op: 2 5

logic: In loop cycles, previously printed factor is not equal to current factor then it prints it. Here extra

variable ‘prev’ is taken to store previous prime factor of ‘i’ (for first time, take prev=1)

 i=2; prev=1;

 while(N>1)

 { if(n%i==0)

 { if(prev != i) // if previous printed factor is not equal to current factor then print

 { printf(“ factor %d “, i);

 prev=i; // take this current ‘i’ value as ‘prev’ for next cycle

 }

 n=n/i ;

 }

 else i++;

 }

In programming, the most of the logics fall under 5 types
1. Sum accumulation logic: used to find sum of values. for example

 finding total bill of all items at supermarket
 sum of polynomial equation terms like x1 + x2 + x3…

2. Product accumulation or diminishing logic: used to find product of n terms
 finding product values like factorial
 finding xy like values

3. Boolean logic: Mainly used checking or searching algorithms
 finding given number is a prime or not
 finding specific record in a file

4. Selection logic: used to select a desired value from a group of values
 finding big/small from array of elements
 finding smallest path in the network

5. updating or advancing data values
 finding GCD of two numbers
 printing Fibonacci series
Other miscellaneous logics like counting, checking for factors, increment/decrementing …etc

 C-Family 95 Loops

Printing each digit separately in a given number (N) [printing right to left]

 ip: 2345 ip: 724
 op: 5,4,3,2 op: 4, 2, 7

Logic: Extract digit by digit from right-to-left in N, and print on the screen, following steps explains it.

step1: divide N with 10 and collect the remainder(s), the remainder is always the last digit of N, when it is

 divided with 10 (lastDigit=N%10)

step2: now print the last digit

step3: to get next digit of N easily, remove current last digit from N, this is by doing N=N/10

step4: repeat step-1, step-2, step-3 until N>0

Let the input is 2345, following table explains how digits are extracted.

Iteration-1
Here N is 2345

10) 2345 (234
 2340

 5 printf(“5”)

void main()
{
 int N , lastDigit;
 printf(“enter N value :”);
 scanf(“%d”, &N);
 while(N>0)
 {
 lastDigit=N%10; // gives last digit of N

 printf(“%d,”, lastDigit); // printing lastDigit

 N=N/10; // removes last digit of N
 }
}

Iteration-2
after N=N/10
Here N is 234

 10) 234 (23
 230

 4 printf(“4”)

Iteration-3
after N=N/10
Here N is 23

 10) 23 (2
 20

 3 printf(“3”)

Iteration-4
Here N is 2

 10) 2 (0
 0

 2 printf(“2”)

Here N is 0
(stop)

 0 (stop)

Finding sum of all digits in a given number (N)

 ip: 2345

 op: 2+3+4+5  14

step1: take ‘sum’ to store sum of all digits

step2: take ‘N’ to store input value

step3: repeat following instructions until N>0

 get the last digit(d) of N by dividing 10, the remainder will be last digit [lastDigit=N%10]

 add lastDigit to sum [sum = sum + lastDigit]

 remove lastDigit from N, for this divide N with 10 and collect the quotient to N [N=N/10]

step4: print(sum)

step5: stop

Note: code the program yourself

 C-Family 96 Loops

Finding whether the given number (N) contains a digit 5 or not ?

 ip: 2357 ip: 2346
 op: yes, 5 is exist op: no, 5 is not exist
 without deep study on logic, one may write the program as bad as

void main()
{ int N, d;
 scanf(“%d”, &N);
 while(N>0)
 { d=N%10; // gives last digit of N

 if(d==5) printf(“ 5 exist”);
 else printf(“5 not exist”);

 N=N/10; // removing last digit of N

 }

 }

if input is: 2357  output is: 5 not exist, 5 exist, 5 not exist, 5 not exist (output of each digit)

the output “5 is not exist” can be conformed only after comparing with all digits of N, but here, in this loop,

for each digit comparison the output has shown on the screen. Therefore, the result displayed 4 times.

Solution is, use Boolean logic, compare digit by digit until ‘5’ is found or N>0.

If 5 is found in loop, then set bool=1 and stop, after looping, show the result based on bool.

step1: first of all, assume, the digit ‘5’ is not exist in N, so initialize ‘found=0’ (here ‘found’ is bool variable)

step2: repeat following instructions until N>0

 get the last digit in N [d=N%10]

 if d==5 then set ‘found=1’ and stop the loop

 if not 5, then go back and check next digit, before going back, remove the current last digit.

step3: after loop, print the result based on the ‘found’

 if(found==1) print(“ 5 found”);

 else print(“5 not found”);

step4: stop.

 void main()

{ int N, d, found;

 printf(“enter N value :”);

 scanf(“%d”, &N);

 found=0; // let us assume digit ‘5’ not exist in N.

 while(N>0)

 { d = N%10;

 if(d==5) { found=1; break;} // now the digit ‘5’ found, so set found=1 and stop the loop

 N=N/10;

 }

 if(found==1) printf(“the digit 5 found”);

 else printf(“the digit 5 not found”);

 }

 C-Family 97 Loops

Finding sum of even and odd digits separately in a number (N)

 ip: 23456

 op: evens sum: 2+4+6 12

 odds sum: 3+5  8

 void main()

{ int N, evenSum, oddSum, d;

 printf(“enter N value :”);

 scanf(“%d”, &N);

 evenSum=oddSum=0;

 while(N>0)

 { d=N%10; // gives last digit of N

 if(d%2==0) // checking digit is odd or even

 evenSum+=d;

 else oddSum+=d;

 N=N/10;

 }

 printf(“\n even sum = %d, odd sum = %d”, evenSum, oddSum);

 }

Counting no.of digits in a given number (N)

 ip: 234 ip: 45
op: count=3 op: count=2

 take variable digitCount to count digits of N

 Remove the last digit of N by doing N=N/10 and count

it as one digit by incrementing digitCount

 Repeat this step until ‘N’ becomes zero

 Print output ‘digitCount’

The variable values in every cycle as

 digitsCount++ N=N/10

Initially 0 2345

After 1
st

 cycle 1 234

After 2
nd

cycle 2 23

After 3
rd

 cycle 3 2

After 4
th

 cycle 4 0

 void main()

{ int N, digitCount=0;

 printf(“enter N value :”);

 scanf(“%d”, &N);

 while(N>0)

 { N=N/10; // removing last digit from N.

 digitCount++; // counting the digits

 }

 printf(“no of digits = %d”, digitCount);

 }

*Finding given number (N) is Armstrong or not?

The number 153 is Armstrong, as sum of cubes of all digits is equal to N: 13+53+33
 1+125+27  153

 ip: 153 ip: 234

 op: Armstrong op: not Armstrong

 void main()

 { int N, sum, rem, temp;

 printf(“enter N value :”);

 scanf(“%d”, &N);

 C-Family 98 Loops

 sum=0; temp=N;

 while(N>0)

 { rem=N%10;
 sum = sum + (rem*rem*rem); // adding sum of cubes of digit

 N=N/10;

 }

 if(sum==temp) printf(“ Armstrong”);

 else printf(“not a Armstrong”);

 }

The instruction N=N/10 makes the ‘N’ to zero by the time of closing loop. There by, the original value of N is

lost after loop. So it saved in ‘temp’ before looping, later checked with ‘sum’ and result printed.

*Finding reverse of a given number (N)

 ip: 234 ip: 4673

 op: 432 op: 3764

 let us assume the variable ‘rev’ already has a value 23 at the moment (rev=23)

 now to insert ‘4’ at the end of ‘rev’, we do as “rev=rev*10+4”  23*10+4  234

 in this way, the digits are extracted one by one from N, and inserted at the end of ‘rev’.

 void main()

 { int N, rev=0, digit;

 printf(“enter N value :”);

 scanf(“%d”, &N);

 while(N>0)

 { digit=N%10;

 rev=rev*10+digit; // adding digit at end of ‘rev’

 N=N/10;

 }

 printf(“reverse = %d”, rev);

 }

Let input is 2345, then the instruction “rev=rev*10+digit” in every iteration is as follows

Let N=2345 d=n%10 rev = rev*10+digit N=N/10

After 1
st

 cycle 2345%10  5 0*10+5  5 234

After 2
nd

 cycle 234%10  4 5*10+4  54 23

After 3
rd

 cycle 23%10  3 54*10+3  543 2

After 4
th

 cycle 2%10  2 543*10+2  5432 0

 C-Family 99 Loops

Finding given number (N) is palindrome or not

If the number and its reverse are equal then it is said to be palindrome

 ip: 234 ip: 434

 op: not a palindrome op: palindrome

step1: find the reverse of given number(N) as said in above program

step2: after loop, compare reverse-value with N and print output

 void main()

 { int N, rev=0, digit, temp;

 printf(“enter N value :”);

 scanf(“%d”, &N);

 temp=N; // saving ‘N’ value in temp

 while(N>0)

 { digit=N%10;

 rev=rev*10+digit;

 N=N/10;

 }

 if(temp==rev) printf(“ given number is palindrome”);

 else printf(“given number is not palindrome”);

 }

Finding the biggest digit of a given number (N)

 ip: 5394 ip: 2375

 op: big= 9 op: big= 7

Take a variable called bigg and compare it with all digits of N, if any digit is bigger than the bigg then copy it

to bigg, finally big-value is collected to bigg. Remember, initially the bigg value is zero.

void main()

{ int N, digit, bigg=0;

 scanf(“%d”, &N);

 while(N>0)

 { digit=N%10;

 if(bigg < digit)

 bigg=digit;

 N=N/10;

 }

 printf(“\n big digit = %d”, bigg);

 }

Let us see, how digits are compared and assigns to bigg

 d=N%10
If(bigg<digit)
 bigg=digit

N=N/10

At cycle1 2375%10  5 0<5  5 2375/10  237

At cycle2 237%10  7 5<7  7 237/10  23

At cycle3 23%10  3 7<3  7 23/10  3

At cycle4 2%10  2 7<2  7 2/10  2

Finding left most odd digit in a given number (N)

Note: If odd digit not found then show an error message called “odd digit not found”

 ip: 2345 ip: 2468

 op: 3 op: odd digit not found

Logic: extract digit by digit in N, if any odd digit is found then store into a variable called ‘temp’ and finally

 print it. Initially take ‘temp’ with ‘0’.

void main()

{ int N, rem, temp=0;

 printf(“enter N value :”);

 C-Family 100 Loops

 scanf(“%d”, &N);

 while(N>0)

 { rem=N%10;

 if(rem%2==1)

 temp=rem; // if odd found then store into temp

 N=N/10;

 }

 if(temp==0) printf(“no odd digit found”);

 else printf(“\n the found odd digit is %d”, temp);

 }

Printing each digit of a number(N) in English words

This program extracts all digits of N from left to right and prints each digit separately in English words.

 ip: 2345 ip: 724

 op: two three four five op: seven two four

It is hard to get digits from left-to-right of N; because, the input N may have any number of digits entered by

the user (not exactly 4-digits as above shown in first input)

For example to get the first digit ‘3’ from 3456, it has to be divided by 1000, similarly to get 7 from 724,

it has to be divided by 100. According to number of digits in N, it has to be divided with 1000/100/10/1.

To generate this type of 10x value based on digit of N, the code is

 p=1;

 while(N/p>9) // loop to generate P value to 10
x-1

 { p=p*10; }

The program code is N=2345, P=1000
 p) N (q

void main()
{ int N, q, P=1;
 printf(“enter N value:”);
 scanf(“%d”, &N);

 while(N/P>9) // generating ‘p’ to 10
x-1

 { P=P*10;
 }

 while(P>0) // printing each digit in English words
 { q=N/P; // gives first digit of N as quotient
 switch(q)
 { case 0: printf(“zero”); break;
 case 1: printf(“one”); break;
 case 2: printf(“two”); break;
 …
 case 9: printf(“nine”); break;
 }
 N=N%P; // removing first digit from N
 P=P/10;
 }
}

Iteration1
 N2345
 P1000

1000)2345(2 printf(“two”)
 2000

 345

Iteration2
 N345
 P100

 100) 345 (3 printf(“three”)
 300

 45

Iteration3
 N45
 P10

 10) 45 (4 printf(“four”)
 40

 5

Iteration4
N5
P-1

 1) 5 (5 printf(“five”)
 5

 0

N0 Stop

 C-Family 101 Loops

Finding decimal value from a given binary input

 ip: 1101 ip: 1111

 op: 13 op: 15

1. multiply all digits of N with 20 21 22 23… from right-to-left

2. The sum of such all products forms a decimal number.

void main()

{ long int rem, N, sum, p;

 printf(“enter any binary number :”);

 scanf(“%ld”, &N);

 sum=0 , p=1;

 while(N>0)

 { rem=N%10;

 sum=sum + rem * p;

 N=N/10; p=p*2;

 }

 printf(“\n decimal number = %ld”, sum);

}

Finding binary of a given decimal value

 ip : 13 ip: 10
 op : 1101 op: 1010

1. let us suppose the given number is 13 (N=13)

2. to get binary equivalent of 13, divide N repeatedly by 2 until N>0.

3. collect the remainders obtained in the division

4. this collection of remainders from bottom to top forms a binary as: 1101

 step1: multiply each reminder with 10i and sum up

 step2: the binary number formed as 1000*1+100*1+10*0+1*1  1101

 void main()

 { int N, i, rem , p;

 long int sum;

 printf(“enter any decimal number :”);

 scanf(“%d”, &N);

 sum=0; i=0; p=1

 while(N>0)

 { rem=N%2;

1 1 0 1  1*2
3

+ 1*2
2

+ 0*2
1

+ 1*2
0
  13

2
3

2
2

2
1

2
0
 8 + 4 + 0 + 1

2 13

2 6 - 1

2 3 - 0

2 1 - 1

 0 - 1

10
3

* 1 + 10
2

* 1 + 10
1

* 0 + 10
0

* 1

L  R

 C-Family 102 Loops

 sum=sum + rem*p;

 N=N/2; p=p*10;

 }

 printf(“\n binary number = %d”, sum);

 }

Printing hexadecimal value from a given number

 ip: 370359 ip: 159

 op : 5A6B7 op: 9F

process: repeatedly divide the N with 16, and collect(insert) the remainders into variable ‘sum’

step1: R=N%16

step2: insert this R into sum, this is like “sum=sum*100+R” //here R can be 2-digit number, so multiply with 100

step3: cut down N to N/16

 repeat above 3 steps until N>0

The hexadecimal value collected in ‘sum’ as  07 11 06 10 05 (7B6A5)

but output should be displayed in reverse form as  5A6B7

to print this number in hexadecimal form, extract 2-digits at a time right-to-left from ‘sum‘ and print

Use two loops, one is to generate ‘sum’ and second one is to print in hexadecimal form.

 void main()

 { long int N, sum=0, rem;

 printf(“enter N value:”);

 scanf(“%ld”, &N);

 while(N>0)

 { rem=N%16;

 sum=sum*100+rem;

 N=N/16;

 }
 // after above loop, the hexadecimal collected in ‘sum’ , now printing on the screen

 while(sum>0)

 { rem=sum%100;

 if(rem<10) printf(“%d”, rem);

 else printf(“%c”, ‘A’+ rem%10); // ‘A’+1  ‘B’ , ‘A’+2  ‘C’

 sum=sum/100;

 }

 }

Let N=370359

16 370359

16 23147  7 0*100+7  7

16 1446  11 (B) 7*100+11  711

16 90  6 711*100+6  71106

16 5  10(A) 71106*100+10  7110610

  5 7110610*100+5  07 11 06 10 05

 C-Family 103 Loops

Printing first 10 terms of Fibonacci series

The first two terms in this series are 0,1 and remaining terms are generated by adding previous two terms.

This is endless series, but here we are printing first 10 terms

 op: 0 1 1 2 3 5 8 13 21 34 55….

step1: Let us take first two terms are X=0, Y=1;

step2: Print the term X.

step3: Generate next term by adding X+Y to ‘new’

step4: Now advance X to Y and Y to ‘new’ for next cycle

step5: Repeat step2 to step4 for 10 times

 Let us see how the X,Y are advancing in every iteration of loop

void main()
{ int X, Y, new, i;

 X=0; Y=1; i=0;

 while(i++ < 10)

 { printf(“%d\t”, X);

new=X+Y; // generating next fibo number

X=Y; // advancing X to Y and Y to new

Y=new;

 }

}

Finding GCD of two numbers

 ip: 12 18
 op: gcd = 6
step1: Let X , Y are input values

step2: Divide Y with X and collect the remainder to R (don’t care if X>Y)

step3: If remainder(R) is zero then stop and print X as GCD

step4: If R is not zero then take X as Y and R as X for next cycle and continue this process until R is zero.

Iteration-1 0 1 1 2 3 5 8…

 X Y new=X+Y

Iteration-2 0 1 1 2 3 5 8…
 X Y new=X+Y

Iteration-3 0 1 1 2 3 5 8…

 X Y new=X+Y

 int x , y , rem;

 scanf(“%d%d”, &x, &y);
 while(1)

 { rem=y%x;

 if(rem==0) break;

 y=x; // take x as y

 x=rem; // take rem as x

 }

 printf(“\n GCD = %d”, x);

 x y

12) 18 (1

 12

 6

x y

6) 12 (2

 12

 0

 stop

 C-Family 104 Loops

Finding LCM of three numbers

 ip: 12 18 45

 op: 180

1. Let X, Y, Z are three input numbers

2. Start finding LCM of three by dividing with first factor 2

3. Now divide each X, Y, Z with 2

4. If any X, Y, Z divided with 2 then take ‘2’ as factor in LCM. (LCM=LCM*2)

 and cut down all divided numbers to its quotient obtained in the division.

 For example, if X is divided with 2 then cut down X=X/2

5. Now repeat step-4 as long as ‘2’ divide the any of X, Y, Z

6. If 2 is no longer divide the X,Y,Z, then next try with next factors 3, 4, 5…etc,

 Repeat this process until any of these (X, Y, Z)>1. For example, while(X>1 || Y>1 || Z>1) {….}

Let the numbers are 20, 15, 35 and following table shows how …

 void main()

 { int x,y,z, lcm=1, i=2, bool;

 printf(“enter 3 numbers :”);

 scanf(“%d%d%d”, &x, &y, &z);

 while(x>1 || y>1 || z>1) // repeat until all becomes 1.

 { bool=0;

 if(x%i==0)

 { bool=1; x=x/i;

 }

 if(y%i==0)

 { bool=1; y=y/i;

 }

 if(z%i==0)

 { bool=1; z=z/i;

 }

 if(bool==1) lcm=lcm*i; // then take ‘i’ as factor

 else i++; // if no number divisible then try with next number(s)

 }

 printf(“\n lcm = %d”, lcm);

 }

2 20 15 35

2 10 15 35

2, 3 5 15 35

3,4,5 5 5 35

5,6,7 1 1 7

 1 1 1

 C-Family 105 Loops

Incrementing given date by N days

Note: here Date is incrementing by 1 in each cycle for n times

1. Take three variables day, month, year to hold the given Date

2. Scan the Date

3. Repeatedly increment day in a Date

4. If ‘day’ is reached to end of month then update ‘day=1’ and ‘month++’

5. If ‘month’ is reached to end of year then update ‘month=1’ and ‘year++’

6. Continue this process for N times

void main()

{ int d, m, y, i=0, N;

 printf(“ente date :“);

 scanf(“%d%d%d”, &d, &m, &y);

 printf(“enter how many days to increment:”);

 scanf(“%d”, &N);

 while(i++ < N)

 { d++; // incrementing day by 1-day

 if(m==2)

 { if(y%4!=0 && d>28 || d>29) // if day is reached to end of February

 { d=1; m++;

 }

 }

 else if((m==4 ||m==6 || m=9 || m==11) && d>30)

 { d=1; m++; // if day is reached to 30-days month ending like april, june,sept…

 }

 else if(d>31) // if day is reached to 31-days month’s ending

 { d=1; m++;

 if(m==13) // if date is reached to end of year

 { m=1; y++;

 }

 }

 }

 printf(“\n date after incrementing = %d/%d/%d”, d, m, y);

}

 C-Family 106 Loops

Finding difference of two dates in days

1. scan two dates date1(d1,m1,y1), date2(d2,m2,y2) from keyboard

2. if(date1>date2) then swap them

3. here every time in the loop, the date1 is incrementing until it reaches date2

4. the ‘count’ increments by 1 in each cycle to count the no.of days between two dates.

 void main()

 { int d1, m1, y1, d2, m2, y2, count=0;

 scan (d1,m1,y1)

 scan (d2,m2,y2)

 while(d1<d2 || m1<m2 || y1<y2) // loop to repeat until date1<date2

 { // incement date1 by 1-day, for this write above program logic here

 count++; // counting no.of days between dates

 }

 printf(“\n no.of days between two dates = %d”, count);

}

 C-Family 107 for- loop

The for loop
The structure of while-loop is simple and used when loop construct contains only condition part, however,

most of the times, loop constructs involve initialization, incrementing or decrementing. In such case, for-

loop is more suitable than any other loop. For-loop consists of three expressions in its header: initialization,

test condition, and incrementing of loop variable.

When your loop to be repeated 10 or N times then for-loop is the choice otherwise while-loop is choice.

Remember, when your loop has parameters like i=1 and i++ then for-loop is the choice.

The For-loop is more flexible as it gives complete idea about the loop such as initial value, condition and

increment. It is the programmer’s choice, which loop to use when and where and it is fairly depends on his

convenience. Some people say for-loop is faster than while-loop, actually same machine code is generated

for both loops

Syntax for for-loop is

 for(initialization; test-condition; increment)

 { instruction 1;

 instruction 2;

 instruction N;

 }

 instruction N+1;

 instruction N+2;

This loop repeats as long as the condition is true, first it enters into loop-body through initialization-part.

From 2nd cycle, the control enters through increment/decrement part. This is as given below

Note: for-loop header must have only two semicolons, if not, it is an error.

Let us have some examples,

 for(initialization; condition; increment)
 {
 instruction-1;
 instruction-2;

 instruction-n;
 }

 for (i=1; i<11; i++)
 {
 printf(”hello1”);

 printf(”hello2”);

 printf(”hello3”);
 }

true

Instruction 1

Instruction 2

instructionN

increment

false
condition

ntion

Instruction N+1

Instruction N+2

intialization

Comes out when

the condition fails
Comes out when

the condition fails

 C-Family 108 for- loop

eg) loop with more initializations

we can initialize more than one variable in the loop header, in that case use comma (,) operator to separate

them. (do not use semi-colon)

 for(i=1 , j=2, k=3; ----- ; -----)

 {

 separate by coma (not semicolon)

 }

eg) loop with more increments or decrements

we can increment/decrement more than one variable in header, but use comma operator to separate them

 for(---------- ; ---------; i++ , j=j+2 , k--)

 {

 separate by coma (not semicolon)

 }

eg) loop with more relational conditions in its part

logical operators are used to combine two or more relations

 for(----; i<10 && j<20; ----)

 {

 } use logical operators to combine relations

eg) infinite loop

 for(; ;) // If three expressions are empty then compiler take it as infinite loop, like while(1) { … }

 {

 }

eg) infinite loop // like while(1){…}, the for loop can be made as

 for(; 1 ;)

 {

 }

Loop to print 1 to 10 numbers
 for(i=1; i<11; i++)
 {
 printf(“%d “, i);
 }

Same code in while loop
 i=1;
 while(i<11)
 { printf(“%d “, i);
 i++;
 }

Loop to print 5 multiples for 10 times
 for(i=5; i<=50; i=i+5)
 {
 printf(“%d “, i);
 }

Loop to print 10 to 1 numbers
 for(i=10; i>0; i--)
 {
 printf(“%d “, i);
 }

loop to print odd numbers from 1 to 100
 for(i=1; i<100; i=i+2)
 {
 printf(“%d “, i);
 }

loop to print odds from n to 1.
 for(i=n; i>0; i--)
 { if(i%2==0)
 printf(“%d “, i);
 }

 C-Family 109 for- loop

eg) all the three parts of loop header may or may not be presented, we can avoid any part just by leaving it

blank. However, the two semicolons must be presented as they indicate separation of three parts.

Displaying natural numbers between two given limits
 ip: 23 45

 op: 23 24 25 ….45

 void main()

 { int lower , upper , i ;

 printf(“Enter lower & upper limits :”);

 scanf(“%d%d”, &lower, &upper);

 for(i=lower; i<=upper; i++)

 { printf(“%d “, i);

 }

 }

Displaying factors of a given number
 ip: 18

 op: 1 2 3 6 9 18

Logic: User may enter any input value, to find factors of such unknown value, divide N with each number

from 1 to N and print factor when it is divided.

 void main()

 { int N, i ;

 scanf(“%d”, &N);

 for(i=1; i<=N; i++)

 { if(N%i==0) // if i divided the N then print ‘i’ as factor

 printf(“%d “, i);

 }

 }

Displaying small factor of a given number(N) (exclude 1 as factor)

Divide N with 2, 3,….N, the first divisible factor is the small factor then stop the loop and print it.

 for(i=2; N%i!=0; i++) // loop stops when ‘i’ divides the N.

 { // empty loop

 }

 printf(“%d “, i);

void main()
{ int i=1;
 for(; i<11 ; i++)
 {
 printf(“%d “, i);
 }
}

 void main()
 { int i;
 for(i=1; i<11;)
 { printf(“%d “, i);
 i++;
 }
 }

 i=1;
 for(; i<11 ;)
 { printf(“%d “, i);
 i++;
 }
this structure is same as while-loop

 i=1;
 while(i<11)
 { printf(“%d “, i);
 i++;
 }

 C-Family 110 for- loop

Finding given number is prime or not?
 ip: 18 ip: 17

 op: “prime” op: “not prime”

Logic: As we know prime numbers does not have factors except 1 and itself.

 So check N by dividing from 2 to N/2; if anywhere divides then print “not prime” otherwise “prime”

 void main()

 { int n,i,bool;

 printf(“Enter number:”);

 scanf(“%d”, &N);

 bool=1; // let N is prime

 for(i=2; i<=N/2; i++)

 { if(N%i==0)

 { bool=0;

 break;

 }

 }

 if(bool==1) printf(“prime”);

 else printf(“not prime“);

 }

Printing uppercase alphabets and its ASCII values
 op: upper case alphabets (A B C D E F G …. Z)

 The ASCII values of A-Z is: 65 66 67 68 69 ….90

 void main()

 { char ch;

 printf(“\n upper case alphabets :”);

 for (ch=’A’; ch<=’Z’; ch++) or // for(i=65; i<=90; i++)

 printf(“%c”,ch); printf(“%c “, ch);

 printf(“\n the ASCII values are:”);

 for (ch=’A’; ch<=’Z’; ch++)

 printf(“%d”,ch);

 }

In the above program, the variable ‘ch’ internally (in memory) contains the ASCII value of characters.

Therefore, we can perform arithmetic operations like incrementing and decrementing. When ‘ch++’ is done

then it attains next character ASCII code.

Printing odd numbers form N to 1.
Scan N value, if N is even then decrement to next odd, now print(N) repeatedly until N>0

 scanf(“%d”, &N);

 if(N%2==0)

 N- -;

 for(; N>0; N=N-2) // here N=N-2 is to get next odd number

 { printf(“%d “, N);

 }

 C-Family 111 for- loop

do-while loop
The do-while loop is quite opposite to while-loop, in case of while-loop, the condition part appears at the

top of loop-body, whereas for do-while loop, the condition part appears at bottom of loop-body.

Thus while-loop is top-test construct, and do-while is bottom-test construct.

As a result, the do-while body executes at least once irrespective of condition is true/false.

The while-loop may or may not be executed; it may fail at the beginning, at least without executing once.

But do-while loop executes at least once irrespective of condition is true/false.

This is rarely used in the programing, who wants to execute loop body at least once.

Syntax is

 do

 { instruction 1;

 instruction 2;

 instruction N;

 } while(condition); // bottom test-condition

 instruction N+1;

 instruction N+2;

Some programmers dislike do-while loop because of its structure, so they always avoid with the help of

while-loop using break statement, which is as given below

 while(1)

 { ----

 if(condition) break; // bottom test-condition, now it is like do-while loop

 }

Printing 1 to 10 numbers using do-while loop
 void main()

 { int i=1;

 do

 { printf(“%d “, i);

 i++;

 } while(i <= 10) ;

 }

Instruction 1

Instruction 2

instruction N

true

false

condition

Instruction N+1

InstructionN+2

 C-Family 112 for- loop

Printing sum of ‘n’ values using do-while
This program accepts values one by one from keyboard until last value is zero, when zero is entered then

stops scanning and prints sum of all values.

 void main()

 { int n, sum=0;

 do

 { printf(“enter values one by one :”);

 scanf(“%d”, &n);

 sum = sum+n;

 } while(n!=0); // if input value is zero then program terminates

 pirntf(“sum = %d”, sum);

 }

Suggestion: try this program using while loop

The break and continue statements
Jumping out of loop using “break”
Loops perform a set of operations repeatedly until given condition is reached. However, in some situations,

loop need to be stopped unexpectedly when required result is attained earlier.

The break is a condition-less control statement, used to terminate the loop unexpectedly when required

result found earlier. The break throws the control out of loop-body, that is, it stops the execution of loop.

Let us see syntax and example

 while (condition)

 { instruction-1;

 instruction-2;

 if(condition)

 break;

 instruction-3;

 instruction-4;

 ...

 instruction-N;

 }

When the if-condition is true, the control move out of loop as shown like arrow, for example:

 i=1;

 while(i<10) for(i=1; i<10; i++)

 { printf(“%d “, i); { printf(“%d “ , i);

 if(i==5) break; if(i==5) break;

 i++; }

 } output: 1 2 3 4 5

 output: 1 2 3 4 5

 C-Family 113 for- loop

Skipping some iterations of loop by “continue”
Sometimes, some iteration of loop needs to be bypassed for some kind of data, for example, we want to

calculate rank of each passed student in a class, but if student is failed then we have to skip such record.

“Continue” is also a condition less control statement, skips some instruction in the loop when it gets

executed. When continue gets executed then the control immediately transfers back to beginning of loop

and follows next cycle, so that bottom instructions are bypassed. This is as shown below

 while (condition)

 { instruction 1;

 instruction 2;

 if(condition)

 continue;

 instruction 3;

 instruction 4;

 instruction 5; // instructions-3 to instruction-N are bypassed by continue

 instruction N;

 }

Examples for “break” Example for “continue”
void main()
{ int i;
 for(i=1; i<=10; i++)
 { if(i==5)
 break;
 printf(“%d “, i);
 }
}

output: 1 2 3 4

void main()
{ int i;
 for(i=1; i<=10; i++)
 { if(i==5)
 continue;
 printf(“%d “, i);
 }
}

output: 1 2 3 4 6 7 8 9 10

 C-Family 114 Nested-Loop

Nested Loop construct
Construction of one loop with in another loop is known as nested loop, the inner and outer loop can be

same or different combination. For example, while-loop can be nested by for-loop. Similarly, we can nest as

many times as we want in the programming. Some examples of nested loop structures are as follows

while(-----)
{
 while(----)
 {

 }
}

For(-----; -----; -----)
{
 while(----)
 {

 }
}

for(-----; -----; -----)
{
 for(-----; -----; -----)
 {

 }
}

 while(-----)
 {
 for(-----; -----; -----)
 {
 while(----)
 {

 }
 }
}

while(condition 1)
{
 instruction 1;
 instruction 2;
 …..
 instruction k;

 while(condition 2)
 { instruction k+1;
 instruction k+2;
 ……
 instruction m;
 }
 instruction m+1;
 instruction m+2;
 …...
 instruction n;
}

while(condition)
{
 instruction 1;
 instruction 2;
 …..
 instruction k;
 for(initialization; condition; increment)
 {
 instruction k+1;
 instruction k+2;
 ……
 instruction m;
 }
 instruction m+1;
 instruction m+2;
 …...
 instruction n;
}

 C-Family 115 Nested-Loop

Printing following pattern(s)
 3 4 5 6 7 8

 3 4 5 6 7 8

 ……

 10 rows

Here the pattern looks like a matrix, it is like columns and rows. We know, to display numbers in a row, we

need a loop. Similarly, to display all such rows in 10 times, we need an extra loop. This extra loop is an outer

loop which repeats the inner loop 10 times.

 void main()

 { int i, j;

 for(i=1; i<=10; i++) // loop to print 10 rows

 {

 for(j=3; j<=8; j++) // loop to print 3-8 column values of each row

 printf(“%d “, j);

 printf(“\n”); // inserting new line after each row

 }

 }

Here the outer-loop is used to repeat the pattern for 10 rows and inner-loop is to print 3to8 of each row.

===

 8 7 6 5 4 3

 8 7 6 5 4 3

 ……..

 10 rows

 void main()

 { int i, j;

 for(i=1; i<=10; i++) // loop to print 10 rows

 { for(j=8; j>=3; j--) // loop to print 8 to 3 column values of each row

 printf(“%d “, j);

 printf(“\n”); // inserting new line after each row

 }

 }

Here outer loop is used to repeat for 10 rows, whereas the inner loop displays numbers from 8 to 3.

==

 for(i=1; i<=10; i++)

 { for(j=1; j<=i; j++) // as ‘i’ increases, the number of columns increases

 printf(“%d “, j);

 printf(“\n”); // inserting new line after each row

 }

1
1 2
1 2 3
………..
 10 rows

In first row, only one number is presented
In second row, two numbers are presented
In i

th
 row, ‘i’ numbers are presented

 C-Family 116 Nested-Loop

 Observe the inner loop ‘j’ in each & every iteration at outer loop is

 1st iteration, when i=1  for(j=1; j<=1; j++)

 printf(”%d “, j); // 1

 2nd iteration, when i=2  for(j=1; j<=2; j++)

 printf(”%d “, j); // 1 2

 3rd iteration, when i=3  for(j=1; j<=3; j++)

 printf(”%d “, j); // 1 2 3

 4th iteration, when i=4  for(j=1; j<=4; j++)

 printf(”%d “, j); // 1 2 3 4

===

654321
54321
4321
321
21
1

for(i=6; i>=1; i--)
{
 for(j=i; j>=1; j--)
 printf(“%d “, j);
 printf(“\n”);
}

The ‘j’ loop repeats as

 for(j=6; j>=1; j--) // 6 5 4 3 2 1
 printf(“%d “, j);

for(j=5; j>=1; j--) // 5 4 3 2 1
 printf(“%d “, j);

 for(j=4; j>=1; j--) // 4 3 2 1
 printf(“%d “, j);
….

123456
23456
3456
456
56
6

for(i=1; i<7; i++)
{
 for(j=i; j<7; j++)
 printf(“%d “, j);
 printf(“\n”);
}

The ‘j’ loop repeats as

 for(j=1; j<7; j++) // 1 2 3 4 5 6
 printf(“%d “, j);

for(j=2; j<7; j++) // 2 3 4 5 6
 printf(“%d “, j);

 for(j=3; j<7; j++) // 3 4 5 6
 printf(“%d “, j);
….

123456
12345
1234
123
12
1

for(i=6; i>=1; i--)
{
 for(j=1; j<=i; j++)
 printf(“%d “, j);
 printf(“\n”);
}

The ‘j’ loop repeats as

 for(j=1; j<=6; j++) // 1 2 3 4 5 6
 printf(“%d “, j);

for(j=1; j<=5; j++) // 1 2 3 4 5
 printf(“%d “, j);

 for(j=1; j<=4; j++) // 1 2 3 4
 printf(“%d “, j);
…

 C-Family 117 Nested-Loop

5 blanks  1
4 blanks 2 2
3 blanks 3 3 3
2 blanks 4 4 4 4
1 blanks 5 5 5 5 5
0 blanks 6 6 6 6 6 6
…6 rows

for(x=5,i=1; i<=6; j++)
{ for(j=1; j<=x; j++) // loop to print blanks

 printf(“⨿“); // ‘⨿’ this is space bar
 for(j=1; j<=i ; j++)
 printf(“%d⨿“ , i);
 printf(“\n”);
 x--;
}
The 1st inner j-loop prints the spaces before
printing numbers
the second inner loop prints the numbers.
Try without using ‘x’.

1111111
2222222
3333333
4444444

8 rows

for(i=1; i<=8; i++)
{
 for(j=1; j<=7; j++)
 printf(“%d “, i);
 printf(“\n”);
}

The ‘j’ loop repeats as
 for(j=1; j<=7; j++) // 1111111
 printf(“%d “, i);

for(j=1; j<=7; j++) // 2222222
 printf(“%d “, i);

 for(j=1; j<=7; j++) //3333333

 printf(“%d “, i);
….

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
…….
8 rows

for(x=i=1; i<=8; i++)
{ for(j=1; j<=5; j++)
 { printf(“%d “, x);
 x++;
 }
 printf(“\n”);
}

the ‘i’ loop repeats 8 times to print 8 rows in the pattern
the ‘j’ loop repeats ‘5’ times to print 5 columns in a row;
the ‘x’ value continuous increments as output is continuous numbers

1234554321
1234554321
1234554321
1234554321
 … 8 rows

for(i=1; i<=8; i++)
{ for(j=1; j<=5; j++) // to print 5 columns in first half of row

 printf(“%d “, j);
 for(j=5; j>=1; j--) // to print 5 columns in second half of row
 printf(“%d “, j);
 printf(“\n”);
}

The first ‘j’ loop prints the 12345, whereas second ‘j’ loop prints the 54321

 C-Family 118 Nested-Loop

 11
 1221
 123321
 12344321
 1234554321
 123456654321
 12345677654321
1234567887654321

to get this pattern, some spaces need to be added before each row,
which is below shown

7 blanks  1 1
6 blanks  1 2 2 1
5 blanks  1 2 3 3 2 1
4 blanks 1 2 3 4 4 3 2 1
3 blanks 1 2 3 4 5 5 4 3 2 1
2 blanks 1 2 3 4 5 6 6 5 4 3 2 1
1 blacks 1 2 3 4 5 6 7 7 6 5 4 3 2 1
0 blanks  1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

 for(x=7,i=1; i<=8; j++)
 { for(j=1; j<=x;j++) // loop to add blanks before each row

 printf(“⨿“);
 for(j=1; j<=i; j++) // loop to print first half of values in a row
 printf(“%d “,j);
 for(j=i; j>=1; j--) // loop to print second half of values in a row

 printf(“%d “,j);
 printf(“\n”);
 x--;
 }
First j-loop prints the blanks, the second & third j-loop prints the 1st & 2nd halves.
Try without using ‘x’

5 blanks  *
4 blanks * * *
3 blanks * * * * *
2 blanks * * * * * * *
1 blanks * * * * * * * * *
0 blanks * * * * * * * * * * *
…6 rows

for(x=5,i=1; i<=6; j++)
{ for(j=1; j<=x; j++) // loop to print blanks

 printf(“⨿“);
 for(j=1; j<2*i; j++)
 printf(“*“);
 printf(“\n”);
 x--;
}
The 1st inner j-loop prints the spaces before
printing numbers
the second inner loop prints the stars.
Try without using ‘x’.

0 blanks  * * * * * * * * * * *

1 blanks * * * * * * * * *

2 blanks * * * * * * *

3 blanks * * * * *

4 blanks * * *

5 blanks *

N=6;
for(X=N, i=0; i<N; i++)
{ for(j=0; j<i ; j++) // loop to print blanks

 printf(“ “); // single space

 for(j=0; j<2*X; j++)
 printf(“*“);
 printf(“\n”);
 X=X-2;
}

 C-Family 119 Nested-Loop

Printing multiplication tables from 5 to 12
 void main()

 { int n,i;

 for(n=5; n<=12; n++) // loop to print tables from 5-12

 {

 for(i=1; i<=10; i++) // loop to print 10 terms in the table

 printf(“\n %d * %d = %d”, n, i, n*i);

 printf(“\n\n“); // inserting two extra new lines after each table

 }

 }

Printing multiplication table(s) for a desired values
This program continuously accepts table numbers from k.B until zero as end of program. When zero is

entered then loop stopped by break and program gets closed. For every input, related table is printed.

 void main()

 { int n , i ;

 while(1)

 { printf(“\n\n enter table number (0 to end):”);

 scanf(“%d”, &n);

 if(n==0) break;

 for(i=1; i<=10; i++)

 printf(“\n %d * %d = %d”, n, i, n*i);

 }

 }

Printing prime numbers list between 50-100
 void main()

 { int n,i,bool;

 for(n=50; n<=100; n++) // loop to print prime numbers from 50-100

 { bool=1; // let us assume ‘n’ is prime, so bool=1

 for(i=2; i<=n/2; i++) // loop to check prime-ness of ‘n’

 { if(n%i==0)

 { bool=0;

 break;

 }

 }

 if(bool==1) printf(“%d “, n);

 }

 }

The outer loop is used for tracing all numbers between 50 to 100 whereas the inner loop is used to check

whether each number (n) is prime or not. This inner loop checks prime-ness by dividing from 2 to n/2.

 C-Family 120 Nested-Loop

Printing twin prime numbers between 2-100
The twin prime numbers are 3-5, 5-7, 11-13, 17-19 …. the difference of their numbers are 2

Logic: initially, let us take first prime 2 (say previous=2), now start finding primes from 3 to 100 (N=3 to 100)

 if N is prime then check out if N-previous==2 or not? If yes then print previous & N as twin primes.

 Now take this current N value as ‘previous’ for next cycles.

 void main()

 { int n, i, prev, bool;

 prev=2; // let us take firs prime 2 for ‘prev’

 for(n=3; n<=100; n++) // loop to print prime numbers from 3-100

 { bool=1; // let us assume ‘n’ is prime, so take bool=1

 for(i=2; i<=n/2; i++) // loop to check prime-ness of ‘n’

 if(n%i==0)

 { bool=0;

 break;

 }

 if(bool==1)

 { if(n-prev==2)

 printf(“\n %d - %d “, prev, n);

 prev=n; // taking current prime as previous prime for next cycle

 }

 }

 }

Adding sum of digits in a given number until it gets single digit
 ip: 19999 op: 1

 process: 1+9+9+9+9  37  3+7  10  1+0  1

 void main()

 { int n, sum;

 printf(“\n enter number :”);

 scanf(“%d”, &n);

 while(n>9) // loop to add repeatedly until n becomes single digit, if n>9 means more digits

 { sum=0;

 while(n>0) // loop to add all digits in ‘n’

 { sum=sum+n%10;

 n=n/10;

 }

 n=sum;

 }

 printf(“\n sum = %d”, n);

 }

 C-Family 121 Nested-Loop

Menu driven program to find given number is odd/even, Palindrome, etc
Menu driven program to find given number is odd/even, Palindrome, Prime, Armstrong, and perfect or not;

 Even: The number is divisible by 2 (remainder is zero)

 Palindrome: If ‘n’ and its reverse are equal then it is called palindrome

 Prime: The number has no divisibles other than 1 and itself

 Armstrong: sum of cubes of digits equal to given number (153  1^3+5^3+3^3  153)

 Perfect: sum of factors equal to given number like 6 (1+2+36)

 While executing the program, the menu appeared as given below

 Menu run

 ==========================

 1. Even/add

 2. Palindrome

 3. Prime or not

 4. Armstrong

 0. exit

 Enter choice [1,2,3,4,0]:

 void main()

 { int N,i,t,r,rev, sum, choice;

 printf("\n enter N value:");

 scanf("%d", &N);

 while(1)

 { printf("\n\n Menu run ");

 printf("\n ==========================");

 printf("\n 1.Even/Odd ");

 printf("\n 2.prime or not");

 printf("\n 3.Palindrome");

 printf("\n 4.Armstrong");

 printf("\n 0.exit");

 printf("\n Enter choice [1,2,3,4,5,0]: ");

 scanf("%d", &choice);

 printf("\n\n output is: ");

 switch(choice)

 { case 1: if(N%2==0) printf("Even");

 else printf("Even");

 break;

 case 2: rev=0; t=N;

 while(t>0)

 { rev = rev*10 + t%10;

 t = t/10;

 }

 if(N==rev) printf("palindrome");

 else printf("not palindrome");

 break;

 C-Family 122 Nested-Loop

 case 3: for(i=2; i<=N/2; i++)

 { if(N%i==0)

 break;

 }

 if(i>N/2) printf("prime");

 else printf("not prime");

 break;

 case 4: t=N; sum=0;

 while(t>0)

 { r=t%10;

 sum=sum + r*r*r;

 t=t/10;

 }

 if(sum==N) printf("Armstrong");

 else printf("not Armstrong");

 break;

 case 0: exit(0); // program closes

 default: printf("invalid input");

 }

 printf("\n\n");

 }

 }

 C-Family 123 1D-Arrays

 Single Dimensional Arrays
In real world, we often need to maintain collection of data such as marks of all students in a class, items

price at supermarket, matrices data, etc. To handle this collection of data, arrays are the alternative.

The word array means, collection of homogenous items arranged sequentially one after other.

In computer science, an array is a collection of adjacent memory locations used to store and access several

similar values using single name. It is a mechanism to handle collection of similar values with a single name.

The new definition is, array is a collection-type data-type for handling collection of same type values.

According to mathematics terminology, array is a vector and single variable is a scalar.

For example, [13, 26, 7, 15, 10, 67, 984] are array of integer values.

Space for all items of array is allocated in contiguous memory locations in the RAM and each item is

accessed with their index value. For above values, the index of 13 is 0, 26 is 1, and 7 are 2 and so on.

Arrays can be extended to any number of dimensions, but most of the time, we use single or double

dimensional arrays. Syntax to declare array is:

int X[5];  single dimensional array int Y[5][6];  two dimensional array

Single dimensional arrays

Syntax to define one-dimensional array variable is: data-type array-name[array-size];

for example int X[7];

Here, the ‘X’ is an array name, which holds 7 integer items. The declaration of array is same as any other

normal variable except the array-size. The size should be mentioned with constant value and which

represents count of elements that are collectively created as array.

Accessing array elements

Each value in the array is accessed independently using its index value with the array name. Especially in C,

the index ranges from 0 to arraysize-1.

The syntax to access array element is:

For example,

the expression x[0] accesses the 1st element in array. Here x[0] 13

the expression x[1] accesses the 2nd element in array. Here x[1] 26

the expression x[i] accesses the i+1th element in array.

X[0] X[1] X[2] X[3] X[4]

Y[0][0] Y[0][1] Y[0][2] Y[0][3] Y[0][4] Y[0][5]

Y[1][0] Y[1][1] … … … Y[1][5]

Y[2][0] … … … … Y[2][5]

Y[3][0] … … … … Y[3][5]

Y[4][0] … … … … Y[4][5]

array-name[index]

x[0] x[1] x[2] x[3] x[4] x[5] x[6]

13 26 7 15 10 67 984
x[0] x[1] x[2] x[3] x[4] x[5] x[6]

 C-Family 124 1D-Arrays

initialization of array VS assignment of array

Assigning values at the time of array declaration is said to be “array initialization”, whereas assigning values

to specific element after array declaration is said to be assignment.

array initialization example

 int a[5]={10, 20, 30, 40, 50 };

array assignment example

 int a[5];
 a[0]=10;
 a[1]=60;
 a[4]=70;
un-initialized cells contain garbage values.

More about array initialization: Syntax is: data-type array-name[array-size]={ list of initial values };

note: the list of initial values should be surrounded by pair of braces { }

About array size

At the time of compilation, the space of variables including arrays logically arranged in an order how they

declared in the program. For example, int a, b, c[5], d, e;

A B c[0] c[1] c[2] c[3] c[4] d e

2byte 2byte  10 bytes  2byte 2byte

Here totally 18 bytes of memory is allocated for all these variables including arrays, generally, these occupy

continuous locations as shown in picture. If array size “int c*5+” is not given then compiler can’t allocate

space for next variables (d,e). Because, at compile time all variable’s space is arranged logically one after the

other, if you don’t mention array-size then compiler cannot allocate space for adjacent variables (here d,e).

So array-size must be given while declaration and it must be constant, if not, we get compile time error.

Let us see some valid and invalid declarations

 eg1) int a[5]; // valid declaration

 eg2) int a[]; // error, size must be given at coding time (empty array not allowed)

 eg3) int n=5;

 int a[n]; // invalid declaration, the size must be constant, the ‘n’ value ‘5’ is available at the time of running, but

 space is created at the time of compilation, so error)

int a[5]={10,20,30,40,50}; 10 20 30 40 50

a[0] a[1] a[2] a[3] a[4]

int a[]={10,20,30,40,50};

10 20 30 40 50

a[0] a[1] a[2] a[3] a[4]

size of array is nothing but number of
values assigned to array

int a[5]={10,20,30}; 10 20 30 0 0

a[0] a[1] a[2] a[3] a[4]

zeroes filled by compiler for last two

int a[5]={9};

9 0 0 0 0

a[0] a[1] a[2] a[3] a[4]

zeroes filled by compiler

int a[3]={10,20,30,40,50};

10 20 30 40 50

a[0] a[1] a[2] a[3] a[4]

compiler shows error, because
the array size < count of values

 C-Family 125 1D-Arrays

 eg4) printf(“enter n value :“);

 scanf(“%d”, &n);

 int a[n]; // this is also a fatal error

Note: These arrays are called static-sized-arrays(fixed size arrays), these are used when we know the size of

array at coding time. For examples phone number with 12 bytes, name with 30 bytes, pincode with 6 bytes,

and address with 50 bytes.

Sometimes, we can’t expect the array-size(data-size) at coding time, then dynamic arrays are the alternative.

We will see at end of chapters [malloc(), calloc(), realloc(), free()]

Checking array boundaries

The compiler does not check whether the array index is in valid range or not, because such provision not

provided/available in C, therefore, it is the programmers responsibility to check array index before running a

program. Ensure that, the index value must lie within the range of 0 to arrSize-1, otherwise program may

crash due to accessing unauthorized memory which is out of range. For example,

int A, B[3], C, D;

A B[0] B[1] B[2] C D

 This memory beyond array limits

 A=10; C=20; D=40;
 B[1] = 300; // valid expression
 B[2] = 400; // valid expression

 B[3] = 500; // in-valid expression

 B[4] = 600; // in-valid expression

 B[-1] = 700; // in-valid expression

The last two expressions B[3]=500, B[4]=600 crosses the array limits and possibly they enter into (C,D)’s
memory, the expression B*3+=500 indirectly puts 500 in ‘C’ and B*4+=600 indirectly puts 600 in ‘D’s memory.
the B[-1+ indirectly puts 700 in ‘A’ . In this way, some array indexes infiltrate into next memory cells and may
corrupt their data or code. If program’s code(instructions) is damaged and processor tries to execute such
damaged instructions then it leads to program crash.

Scanning ‘5’ values to array

int a[5], i;
for(i=0; i<5; i++)
, printf(“enter value of a*%d+:” , i);
 scanf(“%d”, &a*i+);
}
input: enter value of a[0] : 7⤶

 enter value of a[1] : 18⤶

 enter value of a[2] : 12⤶

 enter value of a[3] : 10⤶

 enter value of a[4] : 15⤶

Some people like this style

 int a[5], i;
 printf(“enter 5 values :”);
 for(i=0; i<5; i++) // some people like this style

 { scanf(“%d”, &a*i+);
 }

input: enter 5 values: 7 18 12 10 15 ⤶

We can scan like scanf(“%d%d%d%d%d”, &a*0+, &a*1+, &a*2+, &a*3+, &a*4+); but this leads to complex(heavy)

 C-Family 126 1D-Arrays

Scanning ‘n’ values to array

Sometimes we can’t expect the size or count of input values, the count may vary day to day or time to time,
in that case, first we scan the count of input values and then values of array. For example, in a college, the
class room capacity is 60, but count of joining students may vary year to year, say 20-to-60. In this case, first
we scan the count of joined students and then their marks data. Following example explains how to scan
marks of ‘n’ students and printing average marks of a class.
 void main()
 { int a[60], i, n, sum=0;
 printf(“enter no.of students joined:”);
 scanf(“%d”, &n);
 if(n>60)
 { printf(“error, array size <60 ”);
 exit(0); // closes the program

 }
 printf(“ enter marks of %d students :”, n);
 for(i=0; i<n; i++)
 scanf(“%d”, &a*i+);
 for(i=0; i<n; i++)
 sum=sum+a[i];
 printf(“average marks is %f”, (float) sum/n);
 }

How arrays are useful?

To understand the benefits of arrays, consider the following problem of reading marks of 4 students and

then displaying their total & average.

 void main()

 { int m1,m2,m3,m4, total, avg;

 printf(“enter marks 1:”);

 scanf(“%d”, &m1);

 printf(“enter marks 2:”);

 scanf(“%d”, &m2);

 printf(“enter marks 3:”);

 scanf(“%d”, &m3);

 printf(“enter marks 4:”);

 scanf(“%d”, &m4);

 total=m1+m2+m3+m4;

 avg=total/4;

 printf(“\n total = %d, average = %d”, total, avg);

 }

The above program looks simple since we are taking only the marks of 4 students. If more students exist

then it leads to hard coding and cumbersome in writing many printf() and scanf() functions. For this kind of

problems, arrays are the alternative. Let us try the above program with arrays,

 void main()

 { int m[4], total, avg, i;

 for(i=0; i<4; i++)

 { printf(“enter marks %d ::” , i);

 scanf(“%d”, &m*i+);

 }

ip: enter no.of students joined: 6 ⤶
 enter marks of 6 students: 79 56 67 90 89 78 ⤶
op: average marks is 75.90

 C-Family 127 1D-Arrays

 for(i =0; i<4; i++)

 total = total + m[i];

 avg = total/4;

 printf(“\n total = %d, average = %d”, total, avg);

 }

The size of program will remain same even if the number of students increases, also it leaves the code

simple & readable.

Finding sum, big and small of N values in the array

 input: enter how many input values : 6 ⤶ (no.of input values to the array)

 enter 6 values to array : 4 12 43 6 19 10 ⤶

 output: sum = 94, bigg = 43, small = 4

* to sum all values of array, take variable ‘sum=0’ and do sum=sum+a[i], where i=0 to n-1

* to find big value, take variable ‘bigg=0’ and compare if bigg<a[i] then take bigg=a[i].

 void main()

 { int a[10], sum, bigg, smalll, i, n; // bigg is to hold big-value, smalll is to hold small-value

 printf(“enter how many input values to be scanned to array:”);

 scanf(“%d”, &n);

 if(n>10)

 { printf(“error, insufficient array size, should be below 10 “);

 exit(0); // closes the program

 }
 // now scanning each element one by one to the array

 printf(“enter %d values to array :“, n);

 for(i=0; i<n; i++)

 scanf(“%d”, &a*i+);

 sum=bigg=smalll=0; // to clean the garbage with zero
 for(i=0; i<n; i++)

 { sum=sum+a[i];

 if(bigg < a[i])

 bigg=a[i];

 if(smalll > a[i])

 smalll=a[i];

 }

 printf(“\n sum = %d, bigg = %d, smalll = %d”, sum, bigg, smalll);

 }

In the above program, the bigg is meant to store the biggest value and smalll is to store the smallest value.

In the for-loop, the value of bigg is compared with all values in the array. If any a[i] is found bigger than the

bigg, then it is taken into bigg. In this way, finally the bigger is achieved.

If all inputs are –ve like -12, -45, -6, then the condition if(bigg<a[i]) always fails, because initial value of bigg

is zero, here no array value is > zero, so output zero is printed as big value. So, to solve this problem,

initialize bigg & smalll with any one element in the array before loop. It is better to initialize with a[0].

 C-Family 128 1D-Arrays

Finding how many 3 divisible exist in the array.

Logic: Divide each a[i] with 3 and count them when they divided perfectly, like if a[i]%3==0 then count++;

 void main()

 { int a[50], i, n, count=0;

 printf(“enter how many input values :”);

 scanf(“%d”, &n);

 for(i=0; i<n; i++)

 { printf(“enter value of a*%d+ :”, i);

 scanf(“%d”, &a*i+);

 }

 for(i=0; i<n; i++)

 { if(a[i]%3 ==0)

 count++;

 }

 printf(“no.of 3 divisible are: %d”, count);

 }

 input: enter how many input values : 4

 enter value of a[0] : 7

 enter value of a[1] : 18

 enter value of a[2] : 12

 enter value of a[3] : 10

 output: no.of 3 divisible are: 2

Finding at least one value in the array is –ve or not?

 input: enter how many input values:4

 enter value of a[0] : 7

 enter value of a[1] : -18

 enter value of a[2] : 12

 enter value of a[3] : 10

 output: yes, –ve value exist

 void main()

 { int a[50], i, bool=0, n;

 printf(“enter how many input values :”);

 scanf(“%d”, &n);

 for (i=0; i<n; i++)

 { printf(“enter value of a*%d+ :”, i);

 scanf(“%d”, &a*i+);

 }

 for(i=0; i<n; i++)

 { if(a[i] < 0)

 { bool=1;

 break;

 }

 }

 if(bool==1) printf(“yes, –ve value exist”);

 else printf(“no, -ve is not exist”);

 }

 C-Family 129 1D-Arrays

Finding no.of days in a given month

 ip: 2 2003 ip: 4 2009

 op: 28 days op: 30 days

 void main()

 { int m;

 int days[]={0,31,28,31,30,31,30,31,31,30,31,30,31};

 printf(“enter month:”);

 scanf(“%d”, &m);

 printf(“ days in month is %d”, days*m+);

 }

The array “days[]” holds the number of days in each month. The days in a month initialized to array is

relative to the month-index, for example

 a[1]  January,

 a[2]  February,

 a[0]  0  dummy value..

 note: here leap-year in not considered.

Checking given date is valid or not?

 ip: 30 2 2001 ip: 30 4 2010 ip: 31 12 2021

 op: invalid date op: valid date op: valid date

 void main()

 { int arr[]={0,31,28,31,30,31,30,31,31,30,31,30,31};

 int d, m, y;

 printf(“enter a date :”);

 scanf(“%d%d%d” , &d , &m , &y);

 arr[2] = 28 + (y%4==0); // February has 29 days in leap year, if y%4==0 is true then it gives 1.

 if(m<0 || m>12 || d<1 || d>arr[m])

 printf(“ invalid date”);

 else printf(“ valid date”);

 }

Finding NCR of two numbers

 Ip: 4 2 ip: 7 1

op: NCR = 6 op: NCR = 1

void main()

{ long int a[10]={ 1,1,2,6,24,120,720,5040,… -;

 int n, r, result;

 printf(“enter n & r values :”);

 scanf(“%d%d”, &n, &r);

 result = a[n] / (a[r]*a[n-r]);

 printf(“\n NCR = %d”, result);

}

Initially, the array filled with already calculated factorial values. Therefore, the
NCR value is easily obtained

by substituting in the equation from calculated values. Finally, the result is printed.

 C-Family 130 1D-Arrays

Reversing array elements

 ip: 23 34 56 32 78 89 53 81 18 86

 op: 86 18 81 53 89 78 32 56 34 23 (reversed array)

Program accepts ‘n’ numbers from keyboard and then reverses the elements of the array.

To reverse the elements, swap them in opposite directions i.e., swap the first element with the last element,

second element with the previous of last, and so on. Like shown picture

 void main()

 { int a[20], i, j, n, temp;

 printf(“enter no. of input values n :”);

 scanf(“%d”, &n);

 printf (“enter %d values to array :“, n);

 for(i=0; i<n; i++)

 scanf(“%d”, &a*i+);

 for(i=0, j=n-1; i<j; i++, j--)

 { temp=a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 printf(“\n after reversing, the array elements are \n”);

 for(i=0; i<n; i++)

 printf(“%d “, a*i+);

 }

 Deleting kth position element in the array

 ip: 23 34 56 32 78 89 96

 op: 23 34 56 32 89 96 //after deleting 5
th

 element (78)

The following array contained 10 values, and it gives demo how to delete 5th element.

The code to delete 5th element is as follows

 for(i=5; i<10; i++)

 a[i-1] = a[i]; // it replaces a*4+ by a*5+, a*5+ by a*6+, …etc.

Now write a program yourself, where accept N values from KB and delete kth element in the array(k<N)

later print all elements after deleting kth element.

45 56 77 60 99 87 43 34 17 22

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12]

45 56 77 60
99
87

87
43

43
34

34
44

17
22

22

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12]

23 34 56 32 78 89 53 81 18 86

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

 C-Family 131 1D-Arrays

Inserting a new element at kth position

 ip: 45 56 77 60 99 87 43 34 44 22

 op: 45 56 77 60 99 ‘11’ 87 43 34 44 22 // after inserting 11 at 6
th

 position

Program inserts a new element at kth position in an existing array of ‘n’ elements, where k<n.

To insert a new element at A[k], shift all existing elements of A[k], A[k+1], A[k+2]...a[N-1] to the right side by

one position. So that we get a gap at A[k], where new element can be inserted.

For example, to insert a new element 11 at A[5], shift all elements 22,44,34, 43, 87 to the right side by one

position, so that we get a gap after 87, where 11 can be inserted.

 void main()

 { int a[20],i, k, new;

 printf(“enter no.of input values n :”);

 scanf(“%d”, &n);

 printf(“enter %d values to array : “, n);

 for(i=0; i<n; i++)

 scanf(“%d”, &a*i+);

 printf(“enter new element and position to insert :”);

 scanf(“%d%d”, &new, &k);

 for(i=n; i>=k; i--) // shifting elements to right-side

 a[i] = a[i-1];

 a[k-1]=new; // inserting new element

 n++; // now array contains n+1 elements

 printf(“\n after inserting elements, the array is :”);

 for(i=0; i<n; i++)

 printf(“%d “, a*i+);

 }

Printing factors of each number in given array of 5 values

 ip: 14 16 13 11 24

 op: 14 => 1, 2, 7, 14

 16 => 1, 2, 4, 8, 16

 for(i=0; i<5; i++)

 { printf(“\n factors of %d => “, a*i+);

 for(j=0; j<=a[i] ; j++)

 { if(a[i] % j == 0)

 printf(“%d “, j);

 }

 }

45 56 77 60 99 87 43 34 44 22

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12]

 C-Family 132 1D-Arrays

Printing list of primes in given array of values

 Ip: 23 11 19 20 87 65 42

 op: 11 19 87 // primes

 void main()

 { int a[20], i, bool, j;

 printf(“enter the no.of input values n :”);

 scanf(“%d”, &n);

 printf(“enter %d values to array :“, n);

 for(i=0; i<n; i++) scanf(“%d”, &a*i+);

 for(i=0; i<n; i++) // loop to check each number in the array, whether it is prime or not?

 { bool=1; // let a[i] is prime, so set bool to 1

 for(j=2; j<=a[i]/2; j++) // loop to check a[i] is prime or not

 { if(a[i]%j==0)

 { bool=0;

 break;

 }

 }

 if(bool==1)

 printf(“%d “, a*i+); // if not divided anywhere, it is prime

 }

 }

 i-loop is to check all numbers in the array,

 j-loop is to check each a[i] is prime or not?, it is by dividing from 2 to a[i]/2

Printing common elements of two arrays

 ip: 23 34 45 32 78 44 72 85

 21 44 55 62 56 23

 op: 23 44

Let us say, two arrays a[] & b[] contained n1 & n2 number of elements respectively.

step1: compare a[0] with all the elements of b[], if found anywhere then print it.

step2: compare a[1] with all the elements of b[], if found anywhere then print it.

In this way elements are compared and common elements are printed.

Note: Let each array contained distinct elements (no duplicate exist)

The following figure and code shows how the comparison is done for every element.

23 34 56 32 78 44

A[0] A[1] A[2] A[3] A[4]

21 44 55 62 56 23

B[0] Bb[1] B[2] B[3] B[4] B[5]

The code is,
for(i=0; i<n1; i++)
 for(j=0; j<n2; j++)
 { if(a[i] == b[j])
 , printf(“%d “, a*i+);
 break;
 }
 }

23 34 56 32 78

A[0] A[1] A[2] A[3] A[4]

21 44 55 62 56 23

B[0] Bb[1] B[2] B[3] B[4] B[5]

 C-Family 133 1D-Arrays

Printing all digits of N in ascending order

30) Let N value has non repeated digits like 982463 , now just print all digits in ascending order 234689

step1: take array with size 10, and initialize all cells with 0. This is like: int a[10]={0};

step2: now take digits one by one from N, if digit is 3 then set a[3]=1, in this way fill array cells with 1.

step3: now print all array index values of ‘i’ where a*i+==1 , here i=0,1,2,3,…,9

if N is 982463, let us see how array cells filled with 1’s

 int a[10]={0};

 int n;

 scanf(“%d”, &n);

 while(n>0)

 { a [n%10]=1 ;

 n=n/10;

 }

 for(i=0; i<10; i++)

 { if(a[i]==1)

 printf(“%d “, i);

 }

Finding standard deviation from set of values

 ip: A[] = { 7 , 1 , -6 , -2 , 5 }

 op: result=4.69

The formula for standard deviation is sqrt (∑(A*i]–mean A[])2/N)

Let the average(mean) of all values are M, the formula as given below

 sd = sqrt ((A0-M)2 + (A1-M)2 + (A2-M)2 + (A3-M)2 + … + (An-M)2 / N)

void main()

 { int a[20], i, N, mean;

 float sum, sd;

 printf("enter the no.of input values N :");

 scanf("%d", &N);

 printf("enter %d values to array :", N);

 for(i=0; i<N; i++)

 scanf("%d", &a[i]);

 for(i=sum=0; i<N; i++) // calculating sum of all values

 { sum=sum+a[i];

 }

 mean=sum/N; // calculating mean value

 for(i=sum=0; i<N; i++) // calculating sum of squares to convert –ve values to +ve

 { sum = sum + (a[i]-mean)*(a[i]-mean);

 }

 sd=sqrt(sum/N);

 printf("standard deviation is %.2f", sd);

 }

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

0 0 1 1 1 0 1 0 1 1

 C-Family 134 Functions

Functions
 Function is a subprogram that performs a given sub-task in a program. It is an independent block of

code with a name to perform a specific task. Functions mainly provide reusability and modularity. It breaks

down a big program into several sub programs for easy handling. Thus, collection of functions makes a good

C-program. In computer science, the function is also called routine, subroutine, subprogram, procedure, or

method or module.

 While developing a big application, it should be designed in such a way that, it is divided into

several meaningful modules and each module again divided into several sub-modules called functions.

For example, let us consider student automation project in a school, it can be divided into several modules

say admission, attendance, exam-test, fees, games, etc. Each of these modules is made up of several

functions which accomplish individual tasks. Generally, every module is developed in separate files like

“admission.c”, “attendance.c”, “exam-test.c”, etc; all these files may developed by several people and

finally integrated to build the whole project.

Types of functions
Functions are classified into two types: 1. Library functions 2. User-defined functions

Library functions: These are ready-made functions, which are designed and written by the C

manufactures to provide solutions for basic and routine tasks in the programming. For example I/O

functions printf() & scanf(), mathematical functions pow() & sqrt(), etc. The vendor of C, supply these

predefined functions in compiled format with C software. There is huge collection of functions available to

meet all requirements in the programming, thus this collections are called functions Library.

User-defined functions: We can write our own functions as per our requirement just like any library

function. There is no conceptual difference between user-defined and library functions, all works in similar

manner, besides, our functions can be added to existing library and we can use like a library function.

If more collections found, then we can create our own library.

In C, the main() is also a user defined function, the word ‘main’ reserved by the complier but its body has to

be implemented by the programmer. The main() function works as start & end point of program, and

remaining functions are executed by transferring(call) the control temporarily from main().There is no syntax

difference between main() and other functions, all works in similar way.

Let us see the following example, which illustrates how the functions are executed in the program.

The instruction k=findBig(4,23) is a function-call statement in main(), when it gets executed, the control

jumps to the findBig() fn body along with values (23,4), and these values are assigned to (x, y) variables, after

calculating big value(z), it returns and assign back to k, this is as shown above.

In this way functions are executed.

main() function body findBig() function body

void main()
{
 int k;

 k=findBig(23,4);

 printf(“%d”,k);
}

int findBig (int x, int y)
{ int z;
 if(x>y)
 z=x;
 else
 z=y;
 return(z);
}

 C-Family 135 Functions

*the passing input values to function is said to be arguments, whereas the receiving variables of such

arguments is said to be parameters. In this example, the values(23,4) are called arguments and (x, y) are

called parameters. The arguments and parameters count must be matched, and type must be compatible.

*In this program, we have two functions main() and findBig(). Here the main() is invoking(calling) the

findBig(), so in this context main() is said to be calling-function, whereas findBig() is said to be called-

function.

*Here the word “findBig” is said to be the function name and it follows the rules of variables name. We can

give any name to the function just like a variable name in the program.

*The type int before the function name is said to be return-value-type. In this example, the function is

returning ‘z’ value as int, therefore return-value-type declared as int. The return-type explicitly tells what

type of value the function is returning. It is useful for compiler to check syntax errors as well as to the

programmer for documentation.

*Thus, every function does something and returns a calculated value to the calling-function, all functions

including main() follows same syntax rules with one or two optional statements. The following figure shows

the each & every entity of function

main() function body findBig() function body

void main()
{
 int k;
 k=findBig(23, 4);

 printf(“%d”,k);

 return;
 }

 int findBig(int x, int y)
 {
 int z;
 if(x>y)
 z=x;
 else
 z=y;
 return(z);
 }

Function calling with

arguments (23,4)

Function header with

 parameters (x, y)

Return-value-type

Function name Function name

Return-value-type

Here this ‘return’ statement is not required, because, the last closing

braces ‘}’ of function works as “return” statement.

This last closing braces works as “return” statement. This rule is

applicable to all functions when they are not returning any value.

This is said to be “return-value-type” of a function, this type must be matched with the return-value

of a function. In this example ‘z’ is returning as int, therefore return-value-type declared as int.

 C-Family 136 Functions

Finding tax on employee salary using function

If salary<=10000 then tax=0%

 if salary>10000 && salary<=20000 then tax=5%

 if salary>20000 then tax=8%

The function findTax() is taking employee salary as input(argument), and after calculating tax amount, it

returns and assigns back to ‘tax’. This is as shown in the above figure, here the variable ‘salary’ is said to be

argument, whereas ‘sal’ is said to be parameter. In the above findBig() example, the arguments (23,4) are

constants, but in this example, argument salary is a variable. Here value of salary is passed as argument to

the function. Sometimes argument and parameter names can be same, but they are different copies, let us

see following example

Here argument and parameter variable’s name are same, but they are different copies, so in this total

program two ‘salary’ variables and two ‘tax’ variables exist. One set belongs to main() fn and second set

belongs findTax() fn (A separate memory space is created for each set like above shown picture).

So, argument variables are always different from parameter variables, parameters work like a copy of

arguments. It can be imagined as parameters are place-holder of arguments. Generally, beginners get

confusion when argument & parameters names are same.

main() function body findTax() function

void main()
{
 float salary, tax;
 printf(“enter salary :”);

scanf(“%f”, &salary);

 tax=findTax(salary);

 printf(“tax is %f”, tax);

}

float findTax(float sal) // the variable (parameter) ‘sal’ receives the salary of employee

{
 float t;
 if(sal<=10000)
 t=0;
 else if(sal<=20000)
 t=5*sal/100;
 else
 t=8*sal/100;
 return(t);
}

main() function body findTax() function

void main()
{
 float salary, tax;
 printf(“enter salary :”);

scanf(“%f”, &salary);

 tax=findTax(salary);

 printf(“tax is %f”, tax);
}

float findTax(float salary) // the variable (parameter) ‘sal’ receives the salary of employee

{
 float tax;
 if(sal<=10000)
 tax=0;
 else if(salary<=20000)
 tax=5*salary/100;
 else
 tax=8*salary/100;
 return(tax);
}

salary tax salary tax

 C-Family 137 Functions

Finding factorial of a given value using function

 input: 5

output: 120

 * The fact() function takes argument ‘N=5’ as input and stores into parameter ‘X’.

* After calculating factorial value, it returns and assigns back to ‘k’.

 * In this way, function can be called as many times as we want. Let us see in next example, how functions

 can be called more than once.

Finding NCR of given N and R values

Logic: NCR is a summation of n!, r!, and n-r!. Using fact() function, we can find these three factorials by calling

3 times. The control goes & returns three times to the fact() fn. This is as given below

Let input n=7, r=3; then function calls as given below

 f1 = fact(7); // here value 7 passes as argument to fact()

 f2 = fact(3); // here value 3 passes as argument to fact()

 f3 = fact(7-3); // here value 4 passes as argument to fact()

In first call, the control goes with argument ‘7’ and returns 5040 (7!) and assigns to ‘f1’.

In second call, the control goes with argument ‘3’ and returns 6(3!) assigns to ‘f2’.

In third call, the control goes with argument ‘4’ and returns 24(4!) assigns to ‘f3’.

In this way, reusability of code is possible with the functions whenever it is required.

main() function body fact() function

 void main()
 {
 int N=5;

 int k;

 k = fact(N);

 printf(“factorial = %d”, k);

 }

int fact (int X)
{

 int f , i ;

 for(i=f=1; i<=X; i++)
 f=f*i;

 return(f);
 }

 main() function body fact() function body

 void main()
 { int n,r;
 int f1,f2,f3;
 printf(“enter n & r values :”);
 scanf(“%d%d”, &n, &r);

 f1 = fact(n);
 f2 = fact(r);
 f3 = fact(n-r);
 printf(“ ncr = %d”, f1/(f2*f3));
 }

 int fact(int x)
 {
 int product,i;

 for(i=product=1; i<=x; i++)
 product=product*i;

 return(product);

 }

 C-Family 138 Functions

Finding sum of 1 to N using function (1+2+3+4+5+ …..+N)

Following “findSum()” function calculates the sum of 1+2+3+…+N without using formula, this function takes

‘N’ as argument and returns the sum of 1 to N. Later main() function checks the “findSum()” returned value

is equal to formula N(N+1)/2 or not?. If equal then says “program is correct”, or else says “program has

some logical errors”.

Finding summation of x1/1! + x2/2! + x3/3! + … + xN/N!

Here we have written two functions, first one is to calculate Xi and second one is to calculate fact(i), and

summation of these two functions return values gives the final result.

void main()

{ int N=5, result;

 result=findSum(N); // function call

 if(result==N*(N+1)/2)

 printf(“program is correct”);

 else

 printf(“program has some logical errors”);

}

int findSum(int N)

{ int i , sum=0;

 for(i=1; i<=N; i++)

 sum=sum+i;

 return sum;

}

void main()

{ float sum=0, v1, v2;

 int i;

 for(i=1; i<=N; i++)

 { v1=power(x,i);

 v2=fact(i);

 sum=sum+v1/v2;

 }

 printf(“sum is %f”, sum);

}

int fact(int N)

{ int i , f;

 for(i=f=1; i<=N; i++)

 f=f*i;

 return f;

}

int power(int x , int y)

{ int i , p;

 for(i=p=1; i<=y; i++)

 p=p*x;

 return p;

}

 C-Family 139 Functions

Syntax of function
Function has 3 syntaxes

1. Function definition/body (defines the code of function)

2. Function calling/invoking (executing the function task)

3. Function proto-type (function declaration like variable declaration, discussed at end of this chapter)

① Syntax of function-body

 return-value-type function-name(parameters-list)

 { variable-declaration;

 instruction1;

 instruction2;

 ……..

 return(result);

 }
The function body defines the task of function, ie, what it does. It defines function’s task with input &

output values. The body executes when it is called explicitly from other part of program. Every function

follows this syntax with one or two optional statements.

② Syntax of function-call statement

* Calling a function means invoking the function task, ie, asking the function to do his respective job. When

the above function-call statement gets executed, the control transfers to its body along with arguments and

after executing all instruction within the body, the control returns to same point of call-statement.

* To understand the mechanism of function-call, let us consider a simple example. Suppose owner of house

wants some groceries, so he calls his assistant and gives some money to him, later assistant brought and

returns to him. In the first example, the owner is main() and assistant is findBig(). Here main() wants to find

the big of two, so it called the findBig() and gave arguments (23,4) to him. In this way functions work.

* Function name: the function name should be relevant to function’s task, it should express the purpose of

function. For example, if a function finds square root of a value, then it is better to name it as ‘sqrt()’. The

body of function invokes by calling with this name.

* Calling vs Called: Here the main() is calling the findBig() function, so in this context, main() is said to be

calling-function whereas findBig() is said to be called-function.

* Arguments vs Parameters: Arguments are nothing but input values of function. When a function is called,

they are passed from calling-function to called-function along with the control. Whereas parameters are

variables, which receives (hold) the argument values at called-function. (Arguments are values whereas

parameters are variables)

* Arguments belong to calling-function, whereas parameters belong to called-function.

* Arguments and parameters must be matched or compatible.

* in old definitions, arguments were called actual-arguments or actual-parameters, whereas parameters

were called formal-arguments or formal-parameters. (actual  versus  formal)

variable = function-name(arguments-list);

 C-Family 140 Functions

* The following figure illustrates the relation between argument and parameters.

* return statement terminates the current task of function and returns the control to calling-function

with/without a value.

* function’s-limitation: The ‘C’ function can return only one or none value using ‘return’ statement,

because the syntax provided in that way, to return more values pointers are used. (we will see later)

Note: we have a freedom to write functions in any order, that is, main() function can be written at bottom of

big() function, but as the main() fn is starting point of program, the compiler automatically moves it to

beginning in executable file. In this way programmer has a freedom to write functions in any order.

Finding value of equation A10+B5+C2 using power() function

The power() function takes two arguments(x,y) as base and exponent and returns the power value.

Later the main() function calls power() to find value of equation: A10+B5+C2

void main()

{ int k, A=2,B=3,C=4 ;

 k=power(A , 10) + power(B , 5) + power(C , 2); // here power() fn called 3 times.

 printf(“\n output is = %d”, k);

 }

int power(int x, int y)

 { int product,i;

 for(i=product=1; i<=y; i++)

 product=product*x; // multiplying x*x*x … y times

 return(product);

 }

A demo program how return-value substitutes at fn-call statement
If function is returning any value, then function-call statement can be used as variable or expression in the

program, because the return-value substitutes in place of function-call as a variable. Let us see, how it is

calling() function called() function

return-type calling-fn()
{ -----

 function-call(arguments);

 return(expression);
}

 return-type called-fn(parameters)
{ -----

 return(expression);
}

 void main()
 {
 float area, radius=8;

 area = pie() * radius *radius;

 printf(“\n area = %f”, area);
 }

 float pie()
 {
 return 3.14;
 }

 C-Family 141 Functions

Finding given number is palindrome or not?

The following function takes integer N as argument and returns the reverse of it, later main() function

prints given number is palindrome or not?

 int reverse(int n)

 { int rev=0;

 while(n>0) // loop to find reverse number

 { rev = rev*10 + n%10;

 n=n/10;

 }

 return(rev);

 }

 void main()

 { int n;

 printf(“enter n value :”);

 scnaf(“%d”, &n);

 if(n==reverse(n)) printf(“palindrome”);

 else printf(“not a palindrome”);

 }

As above told example, the function’s return-value is stored into a temporary variable and such value

substitutes in place of function-call. Thus, above function call can be imagined as given below

When the pie() function calls in the main(), it returns the float value 3.14 and substitutes at the
function-call statement as “area=3.14*radius*radius”

Actually, the function’s return-value is stored into a temporary variable (created by compiler) and such
variable substitutes at call statement. Thus above function call can be imagined as
 void main()
 { float area, radius=8;
 temp=pie(); // here this ‘temp’ created by compiler

 area = temp * radius *radius;
 printf(“\n area = %f”, area);
 }
here ‘temp’ is assumed name, actually it is a name-less variable created and used by compiler

 if(n == reverse(n))
 printf(“palindrome”);
 else
 printf(“not a palindrome”);

 temp=reverse(n);
 if(n == temp)
 printf(“palindrome”);
 else
 printf(“not a palindrome”);

 C-Family 142 Functions

Finding big of three numbers using function

This big() function takes two arguments as input values and returns the biggest of them.

Later main() function calls this function to find biggest of 3 given numbers.

 int big(int , int); // fn declartion

 void main()

 { int x,y,z,k;

 printf(“\n enter 3 values :”);

 scanf(“%d%d%d”, &x, &y, &z);

 k=big(x,y); // k=big(x, big(y,z));

 k=big(k,z);

 printf(“biggest = %d“, k);

 }

 int big(int a, int b) // fn body

 { if(a > b) return a;

 else return b;

 }

The above two function-calls can be written in single line as k=big(x, big(y,z))

 Let the x, y, z are 23, 42, 31, then function calls are k=big(23, big(42,31))  k=big(23 , 42)  k=42.

 First the inner-call big(42,31) will be made and it returns 42, and this value substitutes in outer-call as

second argument. Finally outer-call will be made as k=big(23,42);

Finding given number is Armstrong or not?

This function takes integer ‘N’ as argument and returns Armstrong or not? If yes returns 1, otherwise 0.

Later the main() function scans ‘N’ as input and printing it is Armstrong or not?

 int isArmstrong(int n)

 { int t=n, sum=0;

 while(n>0)

 { r=n%10;

 sum=sum+r*r*r;

 n=n/10;

 }

 if(t==sum) return 1;

 else return 0;

 }

 void main()

 { printf(“enter n value :”);

 scanf(“%d”, &n);

 if(isArmstrong(n)==1) printf(“yes, it is Armstrong“);

 else printf(“no, not Armstrong”);

 }

 C-Family 143 Functions

Printing list of Armstrong numbers between 1 to 1000 (using above fn)

Output: 1, 153, 370, 371, 407.

 void main()

 { for(n=1; n<=1000; n++)

 if(isArmstrong(n)==1)

 printf(“%d “, n);

 }

Finding prime-ness of a given number using function

This function takes integer N as argument and returns the prime or not. If prime returns 1, otherwise, 0;

 int isPrime(int n)

 { int i;

 for(i=2; i<=n/2; i++) //checking ‘n’ by dividing from 2 to n/2

 { if(n%i==0)

 return(0); // here N divided, so returning ‘0’ as not-prime

 }

 return(1); // not at all divided, so returning ‘1’ as prime

 }

 void main()

 { int n;

 printf(“enter n value :”);

 scanf(“%d”, &n);

 if(isPrime(n) ==1) printf(“prime number “);

 else printf(“not prime number”);

 }

Printing prime numbers from 50 to 100 using above “isPrime()“ fn.

 void main()

 { int n;

 for(n=50; n<=100; n++)

 { if(isPrime(n)) if(1)  true , if(0)  false

 printf(“%d “, n);

 }

 }

Here isPrime() will be called 50 times with arguments 50, 51, 52, 53, 54, 55, 56, ….,100;

Printing twin primes 2 to 100 using above “isPrime()“ fn.

The difference of two primes is 2 then they said to be twins. For example, 35, 57, 1113, 1719, etc.

 for(n=2; n<100; n++)

 { if(isPrime(n) && isPrime(n+2))

 printf(“\n %d  %d “, n, n+2);

 }

 C-Family 144 Functions

Printing list of primes between given two limits (50 to 100)

 void main()

 { printAllPrimes(50 , 100);

 }

 void printAllPrimes(int lower , int upper)

 { int n;

 for(n=lower; n<=upper; n++)

 { bool=1;

 for(i=2; i<=n/2; i++)

 { if(n%i ==0)

 { bool=0;

 break;

 }

 }

 if(bool==1)

 printf(“%d “, n);

 }

 }

About “void” data-type
In case, if function is not returning any value, then the return-value-type should be ‘void’, the keyword void

is also a data type like int, float, char. It represents empty-type/null-type. The following function welcome()

is returning no-value, therefore we kept “void” as return-type.

The above “welcome()” function is just displaying a message on the screen, it is taking no argument and

returning no-value. Therefore, the return-value-type ‘void’ has given in this example. The last closing braces

of a function works as “return” statement, therefore “return” is an optional statement at the end of

function. As we know, the main() function generally returns no-value, that is why we always write main()

function body as “void main(){…}”

 Main() function welcome() function

void main()

{ printf(“\n Before welcome fn“);

 welcome();

 printf(“\n After welcome fn“);

 return; // this ‘return’ is optional, not required

}

output: Before welcome fn

 Welcome to C-Family Computers

 After welcome fn

void welcome()

{

 printf(“\nWelcome to C-Family Computers”);

 return; // this ‘return’ is optional, not required

}

This ‘void‘ represents, the welcome()

function is returning no-value

 C-Family 145 Functions

Printing multiplication table(s) up to 10 terms

This function takes table number N as argument and prints the 10 terms of a table and returns nothing.

Because this is not calculating any value to return it. The main() calling for tables 3, 6 and 12.

 void printTable(int n)

 { int i;

 if(n<0)

 { printf(“error, table Number should not be –ve”);

 return; // this ‘return’ statement throws the control back to main() fn. (this is not an optional statement)

 }

 for(i=1; i<11; i++) // loop to print 10 terms in a table

 { printf(“\n %d * %d = %d”, n, i, n*i);

 }

 return; // this return statement is optional

 }

 void main()

 { printTable(3); // fn call to print 3
rd

 table

 printTable(6); // fn call to print 6
th

 table

 printTable(-7); // fn call to print -7
th

 table, but shows error as -ve

 }

The printTable() function is not calculating any value, it is just printing table on the screen. Since, it is not

returning any value, the return type “void” specified here.

Printing multiplication tables in given limits like 3 to 19

 void main()

 { printAllTables(3 , 19);
 }

 void printTable(int lower, int upper)

 { int n;

 for(n=lower; n<=upper; n++)

 { for(i=1; i<11; i++) // loop to print 10 terms in a table

 printf(“\n %d * %d = %d”, n, i, n*i);

 }

 return; // this return statement is optional before last closing braces of fn

 }

Program prints 3-digit number in English words

The function printDigit(), prints the given digit in English words, for example, if input argument is 4 then it

prints “four” as English word. This function is returning nothing because it is not doing any calculations, it is

just printing given digit on the screen.

Now using this fn, write a main() fn, where scan 3-digit number like 247 and print output as two-four-seven.

 void main()

 { int n=247; // or scan from keyboard

 printDigit(n/100); // passing 1
st

 digit 2

 printDigit(n/10%10); // passing 2
nd

 digit 4

 printDigit(n%10); // passing 3
rd

 digit 7

 }

 C-Family 146 Functions

 void printDigit(int n)

 { switch(n)

 { case 0: printf(“zero”); break;

 case 1: printf(“one”); break;

 case 9: printf(“nine”); break;

 }

 }

A demo program, how multi-level calls are made

Example, how the control jumps several levels of calls and returning to same point of call.

 void main()

 { printf(“\n before x() function”);

 x();

 printf(“\n after x() function”);

 }

 void x()

 { printf(“\n before y() function”);

 y();

 printf(“\n after y() function”);

 }

 void y()

 { printf(“\n On behalf of C-Family Computers”);

 }

before x() function

before y() function

On behalf of C-Family Computers

after y() function

after x() function

 Here x() function is said to be called-function as well as calling-function.

 The main() is calling the x(), and x() is calling the y(). Therefore, x() is said to be called-function as well as

calling-function based on context.

 The order in which the functions are written, they may not be the same order to be called.

 Functions cannot be nested like control structures, because their body is independent.

 A program can have any number of functions.

 In programming, to accomplish one task, one function may take assistance of other functions and that

functions may take assistance of some other functions. In this way, software designed and developed with

the collection of functions and that are provided by several people in the industry.

 C-Family 147 Functions

* Scope of variables
If any variable is declared within a block then it becomes local to that block and cannot be used or accessed
outside of that block
 void main()
 {
 {
 int k;
 k=100;
 }
 printf(“%d ”, k); // error, undefined symbol ‘k’
 }
 }
Here compiler shows an error message called “undefined symbol k” at printf() statement, because the
variable ‘k’ declared in inner block and we are trying to access or print outside. Thus ‘k’ cannot be used other
than that block. In this way, variables are block-scope. Let us see one more example
example2: void main()

 { int k=100;

 test();

 printf(“the k value =%d”, k);

 }

 void test()

 { k++; // error, undefined symbol ‘k’

 }

Here compiler again shows same error message “undefined symbol k”. The variable ‘k’ declared in main()

function block and we are trying to access in test() function block. In this way, function block is also a block

and we can’t access one block variables in another block.

example3: void main()
 { {

 int k;

 k=100;
 }

 { int k;

 k=200;
 }

 }

Here two copies of ‘k’ variables exist in this program, both memory addresses are different. The first ‘k’

belongs to first inner block and second ‘K’ belongs to second inner block.

example4: void main()

 { int k=90;

 test(k);

 }

 void test(int k)

 { printf(“k value is %d “, k);

 }

Here two copies of ‘k’ variables exist in this program, the first ‘k’ belongs to main() fn and second ‘k’ belongs

to test() fn. Here the first ‘k’ served as argument whereas second ‘k’ served as parameter.

We will discuss this variable’s scope and accessibility in storage classes chapter.

 C-Family 148 Functions

Demo program, how arguments VS parameters behave

If argument is a variable, then its value is passed and assigned to parameter, as we know, the parameter is a

copy of argument, if any changes made in the copy (parameter) that doesn’t affect the original (argument).

The following examples explain in two-ways

Swapping of two values

void swap(int , int); //function proto-type

void main()
{ int x=5,y=7;
 printf(“\n before swapping = %d, %d”, x, y);

 swap(x, y);

 printf(“\n after swapping = %d, %d”, x, y);
}

 void swap(int x, int y)
{ int temp;

 temp=x;
 x=y;
 y=temp;

}
 before swapping = 5, 7
 after swapping = 5, 7

The swap() function cannot swap the x, y values of main() fn, instead, it swaps the x, y of its own function.

As we know, if parameter (copy) changes, it doesn’t affect the argument (original) values.

To swap x, y values of main() using swap() function, pointers concept is used, we will see in the next chapter.

Example 1 Example 2

n

10

void main()

{ int n=10;

 printf(“\n before calling =d”,);

 test(n);

 printf(“\n after calling = %d “, n);

 }

X

10

11

void test(int x)

{

 x++;

}

Output: before calling = 10

 after calling = 10

n

10

void main()

{ int n=10;

 printf(“\n before calling = %d”, n);

 test(n);

 printf(“\n after calling = %d “, n);

}

n

10

11

void test(int n) // int n=5;

{

 n++;

}

Output: before calling = 10

 after calling = 10

1) When test() calls, the argument n value 10 passes and

assigns to parameter x.

Now, x is said to be copy of n. (like above picture)

If any changes made in x, it doesn’t affect the n.

if one wants to change the n through x, then pointer are

required. We will see in next chapter.

Here names of argument & parameter are same;

both variable names are n, but they are different

copies, creates in separate memory area in the

RAM. So, if any changes made in parameter n, it

doesn’t affect to argument n.

Both programs show same output.

 C-Family 149 Functions

Passing array values one by one to function and printing on screen

 void main()

 { int a[5]={ 55, 64, 67, 89, 32 };

 for(i=0; i<5; i++)

 display(a[i]); // calling 5 times using loop, and passing each value one after one.

 }

 void display(int x)

 { printf(“%d “, x);

 }

Here in this program, 5 elements are passed one by one in every call of function, this is just demo program.

Passing all elements of array at a time to a function

 void main()

 { int a[3]={ 55, 64, 67 };

 display(a[0], a[1], a[2]);

 }

 void display(int x, int y, int z)

 { printf(“%d %d %d“, x, y, z);

 }

Here each element is passed separately as an argument to the function, so for 3 arguments, 3 parameters

are required. Here we have taken x, y, z, for a[0], a[1], a[2].

Generally, this logic is not recommended when more elements found in array, for this problem, we have a

solution in pointers concept.

More about functions
1. return and return-value-type

2. about main() function and returning value to O.S

3. types of data communications between functions (calling types)

4. function signature (proto-type)

5. local and global variables

6. rules and regulations applied to functions.

1) return & return-value-type

return: The job of ‘return’ statement is, terminating the execution of current function and transferring the

control back to its calling-function with/without a value. The syntax is

syntax 1: return; // returning the control without value

syntax 2: return(value); // returning with value, here parenthesis are optional

Functions can have any number of return statements but executes only one, upon executing one

statement, the control immediately transfers back to calling-function.

return-value-type: It is the data-type of a value which is being returned from a function, if return-type is

not mentioned explicitly, then compiler takes default type, which is int.

The return-type explicitly tells what type of value the function is returning. It is useful for compiler to check

syntax errors as well as to the programmer for documentation.

 C-Family 150 Functions

2) about main() function

One may get a doubt, if main() is a function, then whom is calling or from which point it is being called.
Actually, it is called by O.S, which is in turn by our self by giving run command like F9 or typing exe file in OS

shell, or in some other form. In some compilers, the main() must return a value, which goes to O.S and takes

some actions like closing streams, files and other resources allocated for the program. It can be any of

following ways

void main()
{

}

Turbo C and other compilers

allow this syntax.

int main()
{

 return 0; // here ‘0’ indicates normal termination
 }

return(0) : defines normal termination of program.

return(errorCode) : defines some error found, here
 errorCode like return(1)/return(2),…
This error codes defined in OS level

int main()
{

 if(condition)
 return 1; // equal to exit(1)

 return 0; //equal to exit(0);

 }

return(0) defines the normal termination of program and it closes all files, i/o streams and other resources

before termination of program.

return(1),return(2), etc defines the abnormal termination of program, here OS records the error-code or

error-type in log files for future reference. (Like history in web-browsers)

int test()
{ int f=56.78
 return(f);
}
Here we are trying to return 56.78, but compiler returns only
56. Because, the return type is int.

float test()
 {
 return(14);
}
Here, compiler returns 14 as 14.00
Because the return-type is ‘float’

void test()
{
 return 10;
}
If return-type is ‘void’ then we can’t return a value.
It shows error.

int test()
{
 return; //observe no value

}
Here compiler shows an error/warning.
Because return-type is int, but we are not returning
any value;

test() // return-type is int
{

 return 10;
}
Here the return-type is not mentioned, so compiler takes
default type, which is int. In some compilers, the default type is
void.

int test(int k)
{ if(k<5)
 return(100);
 else

 return;
}
Error, both ‘return’ statements are not same, first one
is returning 100 but second one is not.
The ‘return’ statements must be same type.

 C-Family 151 Functions

3) Types of data communications between functions

1) function with arguments and return value: most of the calculation functions take arguments
and returns a value. For example, finding factorial value.

 void main()
 { int k;
 k=fact(4);
 printf(“factorial is %d”, k);
 }

 int fact(int n)
 { int f=1;
 while(n>1) f=f*n--;
 return f;
 }

2) function with arguments and no return value: some functions take arguments but returns
nothing, eg printing multiplication table.

 void main()
 {
 printTable(7);
 }

 void printTable(int n)
 { for(i=1; i<11; i++)
 printf(“\n %d * %d = %d”, n,i,n*i);
 return;
 }

3) function with no arguments but returns a value: this task is less common in programming, takes
no arguments but returns a value, like calling: rand() fn, getTime() fn, getDate() fn, getGPS() fn.

 void main()
 { int m1,m2;
 m1=scanMarks();
 m2=scanMarks();
 if(m1>50 && m2>50) printf(“passed”);
 else printf(“failed”);
 }

 int scanMarks()
 { int m;
 printf(“enter marks:”);
 scanf(“%d”, &m);
 return m;
 }

4) function with no arguments and no return value: this is used for fixed jobs, the tasks like clearing
screen, printing common messages.

 void main()
 {
 showAddress();
 }

 void showAddress()
 { printf(“C-Family Computers”);
 pritnf(“Vijayawada”);
 pritnf(“AP,India”);
 pritnf(“pin:520010”);
 }

 C-Family 152 Functions

5) Function proto-type

This concept is very good for senior programmers when they want to create abstract data-types, but for

beginners who learning C, it seems to be worst concept. It creates much confusion over function-call vs

function-proto type. Good news is, in some modern compilers this concept is optional.

The English word proto-type means a model to an actual implementation, in C, it is used to introduce the

function to the compiler to give an idea about the return-type, function-name, argument-type and count.

Let us see, why it is required

 void main()

 { ---

 k=test(20,30); // function-call

 }

 float test(float a, float b) // function body

 { return(a+b);

 }

In C, functions are compiled in an order in which they are written in the program. Here first main() fn, later

test() fn will be compiled. While compiling main() function, at that time, compiler doesn’t know about test()

function(because its body appeared at bottom). When compiler faces the call statement “k=test(20,30)”,

it notices and assumes, the ‘test()’ is a function with arguments 20,30. Based on this call statement,

compiler understands it as, the function is taking two int-type arguments by seeing (20,30) and returning

int-type value. (because default return type is int)

But later, when compiling test() function-body, it will notices as, it is taking ‘float-type’ arguments with

return value float, therefore, this leads to data-type mismatch error between call and body.

 To solve this problem, we have two options,

 1. Declare the function proto-type before first call

 2. Define the function body before first call. (called-function before calling-function)

 float test(float , float); // function proto-type
 void main()
 { ---
 k=test();

}

 float test(float a, float b)
 {
 return(a+b);
 }
proto-type declaration is nothing but, first
function-header line terminated by semicolon.
this is as shown above.

float test(float a, float b) // this body itself works as proto-type
{

 return a+b;
}

void main()
{ ---
 k=test();

}

Note: if called-function body is provided before calling-
function, then the body itself works as proto-type.
In this case, no special proto-type required

 C-Family 153 Functions

6) Rules and regulations applied to functions

1. Argument and parameter must be compatible as per their count, types and order. If argument is int-type

then the matching parameter should be int/long/float or higher types.

2. In C, all functions are global, so any function may call anywhere in the program. Sometimes self-calling is

also possible, this is called recursion, we will see later.

3. Function can return only one value using return statement, to return more values pointer are required.

4. The default return type of function is int. But for some compilers it is void.

5. Some people think that, parameters are special kind of variables and cannot be used other than receiving

arguments. Actually, these are like any other normal variable in the program.

6. Passing arguments and returning value makes the function independent, reusable, easy to write the logic

and understand. Always divide the code as possible as independent blocks of functions.

7) Advantages of functions

Reduces repetition of code: the repeated code can be converted into a function and called as many

times as we want in the programing.

Code reusability: Once, if function is made ready for use, it can be used several times in several programs

where ever it is necessary. Thus, reuse of function makes the programming easier and speed. Generally,

programmers develop applications from already existing code not from zero level. As we know pow(), sqrt(),

printf(), scanf(),…etc are preexisting functions and they are using many times almost in every program.

Reduces complexity: when a big program is divided into several functions, it reduces complexity,

improves readability, easy to modify and also debugging made easy.

Ease of debugging: debugging means finding syntax and logical errors. If any error occurs in a particular

function then it doesn’t require checking in other functions. Therefore, it is easy to find errors.

Increases readability: By observing function call statements (function-name), one can understand what

the function does, functions written by several people for several purposes. Generally, one doesn’t involve

or try to know how other’s functions made it. For example, we are calling “sqrt()” without knowing how it

works. So it is easier to understand the logic when program is made up with collection of functions. By

observing only function call statements in the program one can easily understand the entire logic.

Easy to modify: if one function is modified, that does not affect the other functions as they are

independent.

Portability: in computer science, C became a vital language, its usage extended in almost all fields in the

real world. Therefore, today, the C software is available in most of the computer environments. If a function

is developed on a particular operating system then it can be easily adapted to other operating systems

without/negligible modifications. Such written functions are portable and generic.

 C-Family 154 Functions

 C-Family 155 pointers

Pointers
Pointers play an important role in C language; the excellent features of pointers have made ‘C’ a vital

language in computers world. In some other languages like Pascal, Basic, etc where pointers are not

programmers-friendly as they are in C. In C, pointers are simple to use and programs can be made efficiently

and compactly. They give tremendous power to the programmer. A veteran programmer feels that, in the

absence of pointers no application could be made as efficiently as he expected. However, pointers are

dangerous too, for example a pointer variable containing an invalid address can cause the program to crash.

In programing, in all situations, we cannot access the data directly using variable name. The alternative is,

accessing the data indirectly through its address; this is achieved through pointers. Pointers provide quick

and dynamic access of arrays. Actually, array values implicitly managed through this indirect access

technique only. Because, we can’t provide a name to each value in the array, where all values are accessed

through single pointer. Pointers are preferred mostly in manipulation of arrays, strings, lists, tables, files, etc.

They have well support of implementing dynamic data structures like array-lists, linked-lists, stacks, queues,

sets, trees, graphs , etc.

Definition of pointer
Pointer is a special type of variable, which is used to store address of memory location, so that, such

memory location can be accessed through pointer from any point in the program. In this way, pointers

provide indirect memory accessing.

We know that, memory is a collection of bits, in which each eight-bits constitute one byte. Every byte has its

own unique location number called address. This location number (address) is just a serial number of the

byte sequence. For example, first byte address is 1, second byte address is 2, and so forth. To store this

address, we need a special kind of variable called ‘pointer variable’.

Address of memory location is just a serial number in the byte sequence, so, to store such address, a normal

integer variable is enough. However, indirect accessing is difficult, because the compiler cannot determine

whether the variable is holding an address or value. To work with pointers, we have two unary operators

 Reference/address operator (&)

 De-reference/value operator (*)

The ‘&’ and ‘*’ operators work together for referencing and de-referencing.

Reference operator (&)
This referencing operator is also called address operator, which gives the address of memory in which the

variable is resided. Add symbol ‘&’ before variable name to get its address, for example

 int k=10;

 Syntax to get the address is:

 printf(“ value = %d , address = %u “ , k , &k) ;  value = 10 , address = 2020
 // we know %d is used for signed int , %u is used for unsigned int (address is unsigned int value)

 The address of a variable may not be always a fixed location like 2020 as shown in above, and it is

randomly given by the computer. Here we assumed k’s address is 2020.

k  variable name

10  value

2020 2021  assumed addresses

&variable-name  gives address

&k  2020

 C-Family 156 pointers

 Here the expression ‘&k’ is pronounced as “address of k”. The space for ‘k’ at run time may allocate

anywhere in the RAM, and to get such address, the reference operator(&) is used.

The format string %u or %p is used to print the address. [%pprints the address in hexadecimal format]

 We know that, the variable ‘k’ occupies two bytes in memory. Suppose, it has occupied memory

locations 2020 & 2021, only the first byte address (2020) is considered to be the address of ‘k’ by the

compiler. As compiler aware that ’k’ occupies two bytes in memory, if the first byte address is 2020 then

obviously the second byte address would be 2021. So, we always take first byte address as the address

of a variable irrespective of variable size.

 Remember that, address is an unsigned-int type value.

De-Reference operator (*)
You may misunderstand this operator with multiplication operator, we use this operator for both aspects

and you would not get any confusion between these two, both do different actions.

This de-referencing operator(*) is used to get the value at a given address, for example, *(2020)  10;

the value at address 2020 is 10. This is k’s value.

Syntax to get ‘value’ at given address is: // add symbol ‘*’ before the address

For example: printf(“\n the value of k = %d”, *&k); // output = 10

 *&k  *2020 10

 &k  k  10 // the operators “ and &” can be cancelled when they found in adjacent places

The reference operator (&) gives the address of ‘k’, whereas de-reference operator (*) gives the value in that

address, so finally it is ‘k’ value. This operator is also called ‘value operator’ as it gives the value at given

address, but calling ‘value operator’ is informal.

Most of the time, this operator is called ‘indirection operator’ as it changes the direction of control from one

location to another location (pointer-variable to value-variable, from p to k) within the program’s memory to

access the required data. The action of ‘de-reference’ operator is just opposite to the action of ‘reference’

operator.

Data type of address
If variable type is “int” then its address type is “int*”, similarly, if variable type is “float“ then its address type

is “float*”. In this way, we can easily identify the address-type of a variable. Let us see,

 int X=10; float Y=20.45; char Z=’A’;

Address types are derived types, by adding a symbol star (*) to the any existing data-type, it becomes as

address-type. For example,

 The data type “int*” derived from “int”

 “int**” derived from “int*”

 “int***” derived from “int**”

 ……… in this way we can extend pointers up to any number of times (infinite times)

Similarly, we can define all other types. Notice, pointers are infinite types.

X

10 int

2000 int*

Y

20.45 float

3000 float*

Z

‘A’ char

4000 char*

*addressable_expression

 C-Family 157 pointers

Declaration of pointer variable
The symbol star (‘*’) is a multipurpose operator, used in the following 3 cases

1. As a multiplication operator, to multiply two values

2. As a de-reference operator, to get value at a given address (as shown above)

3. To declare variable as a pointer

Now let us see how to declare a pointer variable

It is just like a normal variable declaration, but the symbol star (*) should be prefixed to the variable name.

(The star symbol differentiates the normal and a pointer variable)

Syntax to declare pointer variable is:

 For example: int *p; // called integer pointer, it holds a integer variable address

 float *q; // called float pointer, it holds a float variable address

Here p and q are pointer variables and they are capable of holding address of int & float variables

respectively. Here p is also called a pointer to int and q is called a pointer to float. The integer pointer is

used to access the integer value indirectly and a float pointer is used to access the float value indirectly.

Note: Address is an integer type value, to store such address, pointers occupy 2bytes memory.

Therefore, all type pointers occupy 2-bytes. Here p & q occupy 2bytes each. (we see later more clearly)

Let us have some demo programs to get command over pointers and their applications.

Demo 1

 void main()

 { int k=10;

 int *p; // here ‘*’ is used to declare ‘p’ as a pointer variable

 p=&k;

 printf(“\n output1 = %d”, *p); //here ‘*’ is used to access k’s memory

 p=20; // here also ‘’ is used to access k’s memory

 printf(“\n output2 = %d”, *p);

 printf(“\n output3 = %d”, k);

 }

Output: output1 = 10

 output2 = 20

 output3 = 20

Here the purpose of the instruction ‘int *p’ is to declare p as a pointer variable. So here, the purpose of

‘*’ is to specify the p as a pointer variable instead of normal variable.

The expression ‘*p’ in printf() statement accesses the k’s memory

When the p is assigned with ‘&k’, it can be called as “the pointer p is pointing to k”, this is visualized as

above figure.

P k (*p)

2020 10

4040 2020

data-type *pointer-name1, *pointer-name2, … ;

 C-Family 158 pointers

Demo 2

This demo program tells how two pointers can points to same location.

Any number of pointers can points to one variable (one location), if the value is changed through one

pointer then the other pointers also gains changed value.

 Here both pointers x,y pointing to the ‘k’. Hence k’s memory can be accessed in three ways using direct

access k, using indirect access *x, and *y; here all expressions *x, *y, k  accesses same location(k).

Demo 3

This demo program swaps two values using pointers.

Demo 4

Expect the output of following program.

Here the pointer ‘x’ initially pointing to ‘k1’, later it is changed to ‘k2’;

so the expression “*x” accesses the memory which is currently pointing to.

void main()
{ int k=10, *x, *y;
 x=y=&k; // both pointers x, y is assigned with &k

 printf(“\n output1 = %d %d”, *x, *y);
 *x=20;
 *y=30;
 k=40;
 printf(“\n output2 = %d %d %d”, *x, *y, k);
}
Output1: 10 10
Output2: 40 40 40

 2020

X 4040

 K

 10

Y 2020 2020

 5050

void main()
{ int k1=10, k2=20, *x, *y, t;
 x=&k1;
 y=&k2;
 t=*x; // t=k1;
 *x=*y; // k1=k2;
 *y=t; // k2=t;

 printf(“\n output1 = %d %d”, *x, *y);
 printf(“ \n output2= %d %d”, k1, k2);
}
Output:
output1 = 20 10
output2 = 20 10

X K1 (*x)

2000 10

4000 2000

Y K2 (*y)

3000 20

6000 3000

void main()
{ int k1=10 , k2=20 , *x;
 x=&k1;
 *x=30;
 x=&k2;
 *x=40;
 printf(“\n %d %d %d %d”, *x, k1, k2);
}

X K1 K2

&K1 10 20

X K1 K2

&K2 10 20

 C-Family 159 pointers

Demo 5

Demo program for swapping two pointers and it is just like swapping two integer values.

Initially x,y are holding address of k1,k2; after swapping x & y, ‘x’ redirected to k2, ‘y’ to k1.

In this way, we can change the pointing address while running a program. Let us have one more example

Demo 6

 Expect the output of following program.

 void main()

 { int k1=10, k2=20;

 x=&k1; y=&k2;

 *x=*x+*y;

 *y=*x+*y;

 printf(“ \n output2= %d %d”, k1, k2);

 }

Demo 7

Expect the output of following program

void main()

{ int k=10, *x, *y;

 x=&k;

 y=x;

 *y=55; *x=66;

 printf(“\n %d %d %d %d”, *x, *y, k);

}

Demo 8

 void main()

 { int k1=10, k2=20 , *x , *y;

 x=&k1; y=&k2;

 printf(“\n enter any two values “);

 scanf(“%d%d”, x, y); // passing x,y values to scanf(), which are nothing but &k1, &k2;

 // this call can be taken as: scanf(“%d%d”, &k1, &k2);

 printf(“\n %d + %d = %d”, k1, k2, *x+*y);

 }

 void main()
 { int k1=10, k2=20, *x, *y, *t;
 x=&k1;
 y=&k2;
 t=x;
 x=y;
 y=t;
 printf(“\n output1 = %d %d”, *x, *y);
 printf(“ \n output2= %d %d”, k1, k2);
 }
Output:
 output1 = 20 10
 output2 = 10 20

Before swapping

X K1

&k1 10

2000 4000

Y K2

&k2 20

3000 5000

After swapping

X K1

&k2 10

2000 4000

Y K2

&k1 20

3000 5000

X Y K

&k &k 10

 C-Family 160 pointers

Types of pointers (address types)

Some people confused over meaning of pointer and an address, actually, it is something like a variable and

its holding value. Similarly, pointer variable holds an address, therefore, we can interchangeably use these

words while telling to others. Already we discussed before about address and its types, now we deal with

more detail. Pointers are derived types as they can be derived from any existing data-type. By adding a

symbol star (*) to the any existing data-type, it becomes as pointer-type.

 The data type: “int*” derives from “int”

 “int**” derives from “int*”

 “int***” derives from “int**” // in this way, we can go up to any levels (infinity)

Similarly all other types are defined and these are infinite types.

For example: int *p; // the data-type of ‘p’ is ‘int*’

 float *q; // the data-type of ‘q’ is ‘float*’

 int **x; // the data-type of ‘x’ is ‘ int**’

 int **y; // the data-type of ‘y’ is ‘ int***’

Here ‘p’ and ‘q’ are pointers of type ‘int*’ and ‘float*’ types respectively.

If there is any data type like ‘XYZ’ then ‘XYZ*’ will become a pointer type.

How much memory occupied by a pointer?

 As we know, address is like an integer number; hence, to store such address, 2 bytes is enough for the

pointer variables. In windows/unix based C-compilers where pointers occupy 4-byte memory.

 In other point of view, only the first byte’s address is considered to be the address of a variable, so to

store such 2byte integer value, pointer requires 2byte.

 For example, here we take below k’s address as 2020 (we ignore 2021)

 In other words, irrespective of type/size of a variable, only the first byte address assigns to the respective

pointer, therefore, 2bytes enough for any type of pointer.

void main()

{ int *p; float *q; char *x; int k; long int v;

 printf(“sizeof(p) = %d”, sizeof(p)); // sizeof(p) = 2

 printf(“sizeof(q) = %d”, sizeof(q)); // sizeof(q) = 2

 printf(“sizeof(x) = %d”, sizeof(x)); // sizeof(x) = 2

 printf(“sizeof(&k) = %d”, sizeof(&k)); // sizeof(&k) = 2

 printf(“sizeof(&v) = %d”, sizeof(&v)); // sizeof(&v) = 2

 printf(“sizeof(v) = %d”, sizeof(v)); // sizeof(v) = 4

}

sizeof() : is an operator, which gives number of bytes occupied by a variable or expression or value.

k  variable name

10  value

2020 2021  assumed addresses

In first version of C, the syntax to declare a pointer was

 int* X,Y, Z; // here X, Y, Z are ‘int*’ types

In next version, it was modified as

 int *X, *Y, *Z; // the ‘*’ shifted to before each variable name

Now if you declare carelessly like: int* X (or) int * X;

 then compiler takes as : int *X; // the symbol ‘*’ shifts to before ‘X’

int* X, Y; here X is a pointer, but Y is a normal int. because it is: int *X, Y;

 C-Family 161 pointers

Let us see, how main memory(RAM) managed in the computer: Memory is a large collection of bytes, in

which it is divided into several logical blocks called segments, and each segment contains 65,535 bytes (64K)

called offsets. The size of segment may vary from one to another operating system. This is as given below

For example: int k=10; // Let us say, the variable ‘k’ allocated in 2020th offset of 3rd segment, then k address

would be 3:2020, but our programs print this address as a single number like 32020.

Conclusion: based on compiler and operating system, the pointer takes 2/4 byte.

Difference between one to another pointer

Even though all pointers occupy same size of 2 bytes to store address, they differ in two cases.

1. While accessing pointing value

2. While incrementing/decrementing the pointer (when accessing array elements through pointer)

 Difference is, int* points to int,

 float* points to float // Similarly, all pointers behave in this way

 For example: int *p;

 float *q;

Let us say, here p & q has assigned with same address 2000, then see how they access pointing memory

the expression *p access only the first 2byte of pointing memory as int-type, like above picture(2000+2001)

the expression *q access the first 4byte of pointing memory as float-type (2000 to 2003).

As p is int* pointer, it access only the first 2byte memory as ‘int’ type.

As q is float* pointer, it access only the first 4byte memory as ‘float’ type.

in this way, pointer access pointing memory. Let us see following example,

 printf(“sizeof(p) = %d”, sizeof(p)); // sizeof(p) = 2

 printf(“sizeof(*p) = %d”, sizeof(*p)); // sizeof(*p) = 2

 printf(“sizeof(q) = %d”, sizeof(q)); // sizeof(q) = 2

 printf(“sizeof(*q) = %d”, sizeof(*q)); // sizeof(*q) = 4

 printf(“\n before incrementing, the address is =%u %u”, p , q); // say output 2000, 4000

 p++; q++; // p increments by 2, q increments by 4

 printf(“\n after incrementing, the address is =%u %u”, p , q); // output will be 2002, 4004

 While accessing array elements using pointer, the incrementing/decrementing is required, where ‘int*’

 increments by 2 to access next element in the array, similarly ‘float*’ increments by 4. We will see this

 incrementing concept next topics.

Segment 1 Segment 2 Segment 3 …

1 2 3 … 64k 1 2 3 … 64k 1 2 3 … 64k

K  variable name

10  value

3 :
2020

 allocated in 2020
th

 offset of 3
rd

segment

p

2000

3000 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6...

2000 2001 2002 2003 2004 2005

*p

*q
q

2000

4000

 C-Family 162 pointers

**Precautions with pointers

Variable and its pointer must be matched, if not, then the pointer may access less or more bytes on pointing

value, resulting, the program may behave strangely such as showing garbage output or crashing of program.

program crash means hanging or closing a program abnormally in the middle of execution.

 void main()

 { int *p;

 long int k=10;

 p=&k;

 printf(“\n output = %ld”, *p);

 }

Did you observe? here p is int*, but k is long-int, even though k is long-int type, its address can be assigned

to int* pointer of p. At compile time, it shows a warning and not an error. But *p access only the first 2byte

of k out of 4byte, since it is an int* pointer. So, pointers blindly access pointing value as its base type.

Example 2:

 void main()

 { long int *p;

 int k=10;

 p=&k;

 printf(“\n output = %ld”, *p);

 }

output = unknown value (garbage)

Here the expression *p access 4 bytes of target pointing memory, first 2bytes belonging to k and rest of 2

bytes unknown memory beyond k. it is said to be illegal accessing, and often called memory leak error, or

pointer leak error. We don’t run this type of programs otherwise may crashed (may closed in the middle of

execution).

Example 3:

 void main()

 { int *p;

 *p=20; // stores value 20 in unknown location, because ‘p’ is not pointing to any variable.

 }

Here ‘p’ has not been initialized with any valid address, so by default it contains garbage (unknown) address.

In the above example, the *p accesses the K’s memory. In this program, ‘&K’ has not been assigned to ‘p’.

So, the expression *p=20 puts 20 in unknown location in the RAM, this leads to illegal access, for security

reasons, the operating system stops our program immediately. This is often called program crash.

Printing address of a variable

Sometimes, we need to check the address of a variable while debugging a program, whether the pointer is

pointing properly or not? To print an address, use format string either %u or %p;

 %u is unsigned-int format , %p is hexa-decimal format

void main()

{ int k=10, *p;

 p=&k;

 printf(“\n &k=%u , p = %u ” , &k , p); // &k = 65524 , p = 65524

 printf(“\n &k=%p , p = %p ” , &k , p); // &k = fff4 , p = fff4

}

p K

&k

10

Beyond
K’s
memory

p k

&k

 2bytes 2bytes

 C-Family 163 pointers

Pointer conversion

In C programming, sometimes, we need to access one of type data from another type of pointer, where

pointer conversion is needed. Here pointer needed to be type-casted as per pointing value. The following

example explains how ‘long int’ value can be accessed through ‘int*’ pointer.

 void main()

 { long int k=100;

 int *p;

 p=&k;

 printf("\n output 1 = %ld", *p);

 printf("\n output 2 = %ld ", *(long int*)p);

 }
 Output:

 output 1 = garbage

 output 2 = 100

As we know, the expression *p access only first 2 bytes of k memory as p is int* pointer. For accessing total

value of k then p should be type-casted to long int*. This is shown in second printf() statement.

NULL pointer value

If pointer contained NULL value, we can say that, currently the pointer is not pointing any memory location.

The symbol ‘NULL’ defined in ‘stdio.h’ file with value zero, at compile time, the symbol NULL replaces by

zero wherever is used in the program (replaced in machine code file not in our source code file).

The usage of NULL is as follows

 #include<stdio.h> // this file must be included

 void main()

 { int *p=NULL; // int *p=0;

 float *q;

 if(p==NULL)

 { ---

 }

 q=NULL;

 }

Misunderstanding in pointer initialization

int k=10;

int *P=&k;  this is initialization of P with &k. So, here &k is assigned to ‘p’ but not to *p. But many

people wrongly identify as, the &k is assigned to *p (because of its appearance). But actually, it is two

actions like given below picture

 int * P = &k; first box is: int *p; and second box is p = &k;

Above initialization can be considered as:

 int *p;

 p = &k;

P

NULL

2020

p k

&k

 2 bytes + 2bytes

Converting data-type ‘p’ from int* to long int*

 C-Family 164 pointers

void* pointer (generic pointer)

it is also called generic pointer, or pointer of no particular type, it can hold any type of address, but cannot

be de-referenced without explicit type casting, because, the compiler cannot determine what type of

address holding by the pointer. The following example explains how the ‘void*’ pointer can be used in the

programming.

void main()

{ int k=10; float f=20.45; void *p;

 p=&k;

 printf(“\n value of k = %d”, *p); // error

 printf(“\n value of k = %d”, *(int*)p); // converting p from “void*” to “int*”

 p=&f;

 printf(“\n value of f = %f”, *p); // error

 printf(“\n value of f = %f”, *(float*)p); // converting ‘q’ to “float*”

}

If p is ‘int*’ pointer then it blindly accesses the pointing memory as int, and if p is ‘float*’ then it blindly

accesses the pointing memory as float. But, void* cannot determine how many bytes to be accessed at

pointing location, because, it can be assigned with any type of address and compiler does not know what

type of address currently it is holding, as a result, the expression *p gives an error at first printf(). So we

need to use type-casting.

Passing address to function

Passing address to a function is same as passing value to a function, but the receiving parameter must be a

pointer of same kind. Using pointer parameter, we can read/write/modify the argument’s value from called

function. Passing address to a function mechanism is often called call-by-reference.

 void test(int *p);

 void main()

 { int k=10;

 printf("\n before call = %d" , k);

 test(&k);

 printf("\n after call = %d ", k);

 }

 void test(int *p) // int *p=&k;

 {

 *p=20;

 }
 before call = 10

 after call = 20

 When the test() function calls in main(), the ‘&k’ passes and assigns to parameter p,

thereby using p, we can read/write/modify the value of k from the test() function.

 Here the expression *p=20 assigns 20 to k.

 this calling mechanism is known as call-by-reference

test() function

p

2020

4040

Main() function

K

 10 20

2020

 C-Family 165 pointers

Arrays VS pointers

Arrays implicitly managed as pointers by the compiler, here all array expressions are converted into pointer

expressions by the compiler. For example, the expression A[i] is converted into *(A+i) and we can also

interchangeably use array expressions as pointer expression and vice-versa. Here array name works as

constant pointer variable, which holds the address of first element. This is as given below

 int A[5]={10, 20, 30, 40, 50};

 Array expressions can be converted and used as pointer expressions in C-Language.

 The array expression A[i] can be taken in pointer expression as *(A+i),

 So the expression A[i] is said to be array-notation, whereas *(A+i) is said to be pointer-notation

  The above array elements can be accessed in pointer-style as

The expression A[0]  *(A+0)  *A

 &A[0]  &*(A+0)  (A+0)  A  2000 (Let us assume 2000 is base address of array A[])

 so the expression ‘&A[0]’ can be taken as ‘A’

 let us see, how array elements are accessed

 A[0]  *(A+0)  *A  *2000  10

 A[1]  *(A+1)  *(2000+1)  *(2002) 20 (integer-address increments by 2)

 A[2]  *(A+2)  *(2000+2)  *(2004) 30

 A[i]  *(A+i)  *(2000+i) ,

Note: compiler implicitly takes A[i] as *(A+ i*sizeof(int))  *(A + i*2)

Making a pointer to an array

the C manufacturers also provided same facility to access such arrays using our own pointers.

Here a single pointer cannot point to all elements at once, instead, it can point to only one element at a

time. By incrementing a pointer or by adding index value to pointer, the remaining elements are accessed.

Let us see one example,

 int A[5] = { 10, 20, 30, 40, 50 };

 int *p;
 p=A; // p=&A[0]; here &A[0] is an integer address, so our pointer should be int *p;

 Let us see, how the pointer ‘p’ is pointing to an array

 A A[0] A[1] A[2] A[3] A[4]

2000 10 20 30 40 50
4000 2000 2002 2004 2006 2008

A *(A+0) *(A+1) *(A+2) *(A+3) *(A+4)

2000 10 20 30 40 50
4000 2000 2002 2004 2006 2008

 *(p+0) *(p+1) *(P+2) *(P+3) *(P+4)

 A A[0] A[1] A[2] A[3] A[4]

2000 10 20 30 40 50

4000 2000 2002 2004 2006 2008

 P

2000

8000

 C-Family 166 pointers

the above pointer expression *(p+0) , *(p+1) , *(p+2)… can be written as p[0] , p[1] , p[2] , p[3]

Since *(p+i) can be written in array style as p[i]

the expressions *(p+0)  p[0]  *p accesses the A[0] // now p[0] and A[0] access same location

 *(p+0)  *(2000+0)  *2000  10

 *(p+1)  p[1] accesses the A[1]

 *(p+1)  *(2000+1)  *2002  20

 *(p+2)  p[2] accesses the A[2]

 *(p+2)  *(2000+2)  *2004  30

The above figure can be imagined with the pointer “p” as

Example2: if the pointer ‘p’ is set to A[2] then the expressions are as follows

 int A[5] = {12,13,14,15,16};

 p = &A[2];

here p[0] is A[2] , p[1] is A[3] , p[2] is A[4] , p[-1] is A[1], p[-2] is A[0]

Demo program for printing array elements using pointer

void main()

{ int A[5] = {10, 20 , 30, 40, 50};

 int *p;

 p=A; // p=&A[0];

 for(i=0; i<5; i++)

 printf(“%d “, *(p+i) or p[i]);

 for(i=0; i<5; i++)

 { printf(“%d “, *p);

 p++; // increments by 2

 }

 }

 The above two loops print the same output.

 In the 2nd for loop, the p advances to next element after every p++ operation, observe following figure

 P[0] P[1] P[2] P[3] P[4]

P *p *(p+1) *(p+2) *(p+3) *(p+4)

2000 10 20 30 40 50

4000 A[0] A[1] A[2] A[3] A[4]

 P[-2] P[-1] P[0] P[1] P[2]

 *(p-2) *(p-1) *(p) *(p+1) *(p+2)

P A[0] A[1] A[2] A[3] A[4]

2004 12 13 14 15 15

4000 2000 2002 2004 2006 2008

A[0] A[1] A[2] A[3] A[4]

10 20 30 40 50

2000 2002 2004 2006 2008

P After p++

2000 2002

4000 4000

 C-Family 167 pointers

 Example for printing address of each element in the array

void main()

{ int x[5] = {1,2,3,4,5};

 printf(“\n address of all locations are \n”);

 for(i=0; i<5; i++)

 printf(“\n %u %u “, &x*i+ or x+ i);

}

Output: 2000 2002 2004 2006 2008 // address of each element in the array

Passing one dimensional array to function

We cannot pass entire array of elements to a function, that is, we cannot send all elements at once, there is

no such provision in C, solution is, passing base address and accessing through pointer. This is simple & fast.

void main()

{ int A[5]={11, 22, 33, 44, 55};

 display(A); // display(&A[0]);

}

void display(int *p (or) int p[])

{ int i;

 for(i=0; i<5; i++)

 printf(“%d “, p[i] (or) *(p+i));

 OR

 for(i=0; i<5; i++, p++)

 printf(“%d “, *p);

}

In the above program, when display() function gets called, the argument ‘&A*0+’ will be passed and stored

into pointer ‘p’. This is same as passing integer address to a function. The parameter ‘p’ can be declared in

two ways like: int *p (or) int p[] (these two declarations are same)

The first declaration ‘int *p’ makes some confusion whether the pointer ‘p’ is pointing to single-integer or

array-of-integers, so one cannot be determined immediately. Therefore, C providers gave 2nd declaration.

But by seeing int p[], one might wrongly think, it is an empty-array, but actually it is also same as int *p.

This declaration gives a clear idea that, ‘p’ is receiving an array-address instead of single integer address.

While developing big size applications, there exist many functions and all are messed up in the program.

The called-function may not be found at bottom of calling-function, it may exist in some other file, that is

why, they recommend this array-like-pointer declaration “int p*+”. It gives clear idea that, p is pointer to an

array instead of single-value.

Let us have one more example, filling values to array at called-function.

 void main()

 { int a[3];

 fill(a);

 printf(“\n after filling, the values are \n”);

 printf(‘%d %d %d“, a*0], a[1], a[2]); // output: 10 16 9

 }

 void fill(int p[] or int *p)

 { p[0]=10; p[1]=16; p[2]=9;

 }

*P *(P+1) *(P+2) *(P+3) *(P+4)

1 2 3 4 5

A[0] A[1] A[2] A[3] A[4]

p

&A[0]

 C-Family 168 pointers

Example2: following function takes array-address and number of elements, returns the sum of all values.

int findSum (int p[] , int n)

{ int i, sum=0;

 for(i=0; i<n; i++)

 { sum=sum+a[i];

 }

 return(sum);

}

void main()

{ int a[5], n, i, k;

 printf(“enter 5 values to array: ”);

 for(i=0; i<5; i++)

 scanf(“%d”, &a*i+);

 k = findSum(a , 5);

 printf(“\n the sum of all values = %d”, k);

}
 input: enter 5 values: 4 7 8 2 3

output: sum is 24

Pointer to pointer (multiple indirections)

A pointer which points to another pointer variable is known as “pointer to pointer”. For example, to store

the address of int variable, the int* pointer is required, similarly, to store the address of int* variable, the

int** pointer is required. In this way, we can extend up to desirable number of indirections. But most of the

times we use single or double pointers. Pointer to pointer mainly used in multi-dimensional arrays.

 void main()

 { int K=10;

 int *P; // single indirection

 int **Q; // double indirection

 int ***R; // triple indirection

 P=&K; Q=&p; R=&Q;

 printf(“\n output = %d %d %d “, K , *P , **Q , ***R);

 }

The expression ‘*R’ accesses the ‘Q’, the ‘**R’ accesses ‘P’, the ‘***R’ accesses the ‘K’ value.

R Q P K

6000 4000 2000 10

8000 6000 4000 2000

int*** int** int* Int

 *R  Q **R  *Q  P ***R  **Q  *P  K

The ability to access calling-function’s array elements at the called-function using its base-address

provides convenience for moving multiple data items back and forth between functions shows the

excellence of pointers in C.

 C-Family 169 pointers

Array of pointers

In computer science, array of pointers vastly used in the programming. I recommend you to practice more

on this kind of applications. Array, which can hold the collection of addresses is known as array of pointers.

For example, we can declare array of pointers as int *p[3] instead of int *p1,*p2,*p3.

Using this concept, we handle 2D array data such as matrices and tables with flexible and compact code.

“float *p*3]. Here p[0], p[1], p[2] are pointers of type ‘float*’ each. (array of 3 float pointers)

Demo program for array of pointers

 void main()

 { float a=10.4, b=45.64, c=56.45;

 float *p[3];

 p[0]=&a; p[1]=&b; p[2]=&c;

 printf(“ %f %f %f”, *p*0+, *p*1+, *p*2+);

 }
output: 10.4 45.64 56.45

Let us see one more example

void main()

{ int *p[3], a[5]={1,2,3,4,5}, b[5]={6,7,8,9,10}, c[5]={11,12,13,14,15};

 p[0]=a; p[1]=b; p[2]=c; // p[0]=&a[0]; p[1]=&b[0]; p[2]=&c[0];

for(i=0; i<3; i++)

{ for(j=0; j<5; j++)

 printf(“%d “, *(p*i++j) or p[i][j]);

 printf(“\n”);

}

}
 output: 1 2 3 4 5

 6 7 8 9 10

 11 12 13 14 15 16

P[0] P[1] p[2]

&a &b &c

4000 4002 4004

a b c

10.4 45.64 56.45

P[0] P[1] p[2]

2000 400 6000

8000 8002 8004

1 2 3 4 5

2000

6 7 8 9 10

4000

11 12 13 14 15

6000

 C-Family 170 pointers

Call by value vs Call by reference

In call by value method, the values of arguments are passed and stored into parameters. That is, a copy of

argument’s data is created in parameters at the called-function. Now, the arguments are said to be original

copy and parameters are said to be duplicate copy. So, if any changes made in parameters (duplicate) that

doesn’t affect to arguments(original). For example calling pow(), sqrt(), printf(), …etc. these functions

follows the call by value method.

In call by reference method, the address of arguments is passed and stored into corresponding pointer-

parameters. Now, using these parameters, we can read/write/modify the argument values.

For example, calling swap() function, incrementDate() function…etc. Let us see an example

As we know, using ‘return’ statement, we can return only one value from a function, because most of the

time, we return only single value, therefore the syntax was provided in that way. So, to return more values,

pointers are used. Here we can return indirectly through pointers. The above swap() function indirectly

returned the swapped values to main() function through pointers.

Let us see one example

Following function takes radius as argument and returns area & perimeter of a circle.

 void find(float radius, float *p, float *q)

 { *p= 3.14 * radius *radius; // assigning indirectly to ‘area’ in main() fn.

 *q=2*3.14*radius; // assigning indirectly to ‘circum’ in main() fn.

 }

 void main()

 { float radius, area, circum;

 scanf(“%f”, &radius);

 find(radius, &area, &circum);

 printf(“ area = %f”, area);

 printf(“\ncircumference = %f”, circum);

 }

Here find() function is taking radius as input argument and calculating area & circum. These two calculated

values indirectly assigning to main() function variables area & circum through p&q pointers.

 P q

&area &circum

area circum

34.56 10.45

Call by value does not work
void main()

{

 int a=10, b=20;

 printf(“\n before swap = %d %d”, a, b);

 swap(a , b);

 printf(“\n after swap= %d %d”, a, b);

}

void swap(int x , int y) // x=a, y=b

{ int t;

 t=x;

 x=y;

 y=t;

}

Before swapping = 10 20

 after swapping = 10 20

The (a,b) values(10,20) are passed and stored in (x,y) so

if any changes made in (x, y) that does not affects the

values of (a, b)

Call by reference works
void main()

{

 int a=10, b=20;

 printf(“\n before swap = %d %d”, a ,b);

 swap(&a, &b);

 printf(“\n after swap= %d %d”, a , b) ;

}

void swap(int *x , int *y) // x=&a, y=&b

{ int t;

 t=*x;

 *x=*y;

 *y=t;

}

Before swapping = 10 20

 after swapping = 20 10

The swap function pointers(x, y) are pointing to main

function’s (a, b). So the expressions (*x, *y) indirectly

swaps the values of (a, b) .

 a

10

b

20

 x

&a

 y

&b

 a

10

b

20

x

20

 y

2

 C-Family 171 pointers

Returning sum & product of 1+2+3…+N, 1*2*3…*N using single function.

This example explains how the function find() returns the sum & product of 1 to N to the main() function.

This function returns sum and product indirectly through pointers.

Here ‘find()’ fn takes arguments N along with address of variables which receives the returning values.

 void main()

 { int N=12, sum, product;

 find(N, &sum, &product);

 printf(“\n sum = %d , product = %d “, sum, product);

 }

 void find(int N, int *x, int *y)

 { int i, s=0 ,p=1; // ‘i’ for looping, ‘s’ for sum, ‘p’ for product.

 for(i=1; i<=N; i++)

 { s=s+i; p=p*i;

 }

 // following assignments, returns s, p values to sum, product in main() fn through pointers x , y.

 *x=s; // sum=s;

 *y=p; // product=p;

 }

Following function returns big & small in array of 10 values.

The function findBigSmall(), which takes array base address & number of values in the array and to return

the big & small of them. Fill the body of following fn.

 void main()

 { int a[10]={11, 34, 88, 49, 15, 66, 45, 23, 32, 17 }; // 10 values

 int big , small;

 findBigSmall(a, 10, &big , &small);

 printf(“\n big = %d, small = %d”, big, small);

 }

 void findBigSmall(int a[] , int n , int *pBig , int *pSmall)

 { int s, b, i;

 s=b=a[0];

 for(i=0; i<n; i++)

 { if(b<a[i]) b=a[i];

 if(s>a[i]) s=a[i];

 }

 *pBig=b; *pSmall=s; // returning two values to main() fn

 }

Advantages of pointers
1. Call by reference

 We can return more values from a function

 Passing array to function is possible only through call-by-reference

 If data is big like strings, structure, file then call by reference saves the time and space.

2. Dynamic memory allocation is possible only with the help of pointers.

3. Direct interaction with hardware and O/S is possible.

4. Pointers are the backbone to implement dynamic data structures.

5. Pointers make the code flexible, compact and fast execution

6. Through pointers it is easy to handle large collection of data.

 C-Family 172 pointers

More about pointers

1. Some common ways of pointer pointing to

 Pointer to normal data variable

 Pointer to pointer

 Pointer to one-dimensional array

 Pointer to two-dimensional array

 Pointer to three-dimensional array…etc

 Pointer to function

 Pointer to structure

 Array of pointers

2. All pointers occupy equal number of bytes to hold address

 int* pointer occupies 2 bytes

 int** pointer also occupies 2 bytes

 float* pointer occupies 2 bytes

 char* pointer also occupies 2 bytes

3. The type difference between one to another pointer helps to determine the data type of target location

which the pointer pointing to

 int* pointer points to int memory

 float* pointer points to float memory

 Similarly, all pointers occupy in that way.

4. Incrementing/decrementing changes the pointer from one to next location in the array

 int* pointer increments by 2

 float* pointer increments by 4

5. Allowed and not allowed arithmetical operations on pointers

 Adding or subtracting integral value to address is allowed like p+1, p-1, p+10 …etc

 Multiplying or dividing integral value to address gives no meaning

 Adding or multiplying or dividing two addresses has no meaning

 Subtracting two addresses has a meaning (If two addresses belong to same array)

For example, &x[6]-&x[2] givens the number of elements between locations.

 Comparison of two addresses is allowed

Note: If any operation has meaning on pointers then compiler allows such operation.

Pointer to function
Pointer not only points to a data, but also can points to a code. That is, a pointer can be made to points to a

function. So that using pointer, we can make function calls also. In C, every function is loaded in separate

memory location as it appears in C program. This location address is the entry point of a function, ie, it is the

first instruction address of a function. Using this address, we can shift the control from caller-function to the

called-function.

This approach seems to be unnecessary in general programming. Because in C, all functions are global, any

function can be called from anywhere in the program. However, it is possible to pass addresses of different

functions in different times to a function thereby making function-calls more flexible and abstract.

 C-Family 173 pointers

Syntax to declare a pointer to function

Let us see some examples

① int (*p)(int,int)  here the pointer ‘p’ can pointing to a function of type ‘int fn-name(int,int)’

 this is, the fn which takes two integer arguments and returns an integer value.

② void (*p)()  here the pointer ‘p’ can pointing to a function of type ‘void fn-name()’

 this is, the fn which takes no arguments and returns no value.

③ float (*p) (float,float,float)  it can pointing to a function of type ‘float fn-name(float, float, float);

To get the address of a function, use the function name without parenthesis and arguments that gives

starting address of a function. The following program gives a demo.

void main()

{ void (*p)(); // pointer to function, which takes no arguments and returns no value.

 p=test; // assigning test() function address to ‘p’

 p(); // calling test() function through ‘p’

 (*p)(); // this is another style of calling the test() fn, this is old style.
}

void test()

{ printf(“\n Hello World”);

}

Example for calling a function based on even/odd input

 void main()
 { int n , k;
 int (*p) (int , int); //this is pointer to a function, which takes 2-int arguments and returns int value

 printf("enter N value :");
 scanf("%d", &N);
 if(N%2==0) p=add;
 else p=subtract;

 result = p(10,20); // calling the function based even or odd

 printf("output = %d", result);
 }
 int add(int x, int y) { return a+b; }
 int subtract(int x, int y) { return a-b; }

Demo, passing one function address to another function

void y()
{
 printf(“hello”);
}

Void x (void (*p)())
{
 p(); // calling y() fn through ‘p’

}

void main()
{
 x(y); // passing y() fn ddress to x() fn

}

return-value-type (*pointer-variable-name) (list-of-parameters-type);

 C-Family 174 pointers

 C-Family 175 Sortings

Sorting and Searching
The word sorting refers, arranging the data either in ascending or descending order. The collection of data

may be an integers, real numbers, strings, etc. In computer science, the task of sorting is major process in

everyday life. Therefore, there are several efficient techniques were invented, so programmer may relax

from how to code and sort elements efficiently. U may get one doubt, what is the use of sorting? If data is

not sorted order then searching takes much time. If data is in sorted order then searching will be easy, here

the search operation takes less than log2N time. We have 3 elementary techniques available

 1. Bubble sort.

 2. Selection sort.

 3. Insertion sort.

We have several advanced alternative sorting techniques available (not covered in this book)

Bubble sort

In bubble sort, the adjacent pair of elements are compared one with next element, and placed into sorted

order by swapping disorder elements. ie, if a[i]>a[i+1] then swapping takes place. In this way bubble sort

works. While comparing elements, each adjacent pair imagined as one bubble, therefore it was called as

bubble sort. The process will be as follows

Step1: In first phase of loop, it compares a[i] with a[i+1], if any a[i]>a[i+1] then swapping takes place. In this

way it compares and swaps from first element to last element. After this process, the biggest element will be

moved to last position and it is said to be sorted.

Step2: In second phase of loop, it takes only first N-1 elements of array and repeats as said in step1,

(here do not take last element, because it was already sorted in previous step1). In this step, the second big

will be moved to N-1th position and it is said to be sorted. In this way, bubble sort works.

Suppose, the values are 90 10 70 30 20 and in every cycle of loop is as follows

phase1: Before 1st iteration 90 10 70 30 20

 Before 2nd iteration 10 90 70 30 20

 Before 3rd iteration 10 70 90 30 20

 Before 4th iteration 10 70 30 90 20

 after 4th iteration 10 70 30 20 90 (90 sorted here)

phase2: Before 1st iteration 10 70 30 20 90

 Before 2nd iteration 10 70 30 20 90

 Before 3rd iteration 10 30 70 20 90

 after 3rd iteration 10 30 20 70 90 (70 sorted here)

 In this way all elements gets sorted

 int bubbleSort(int a[] , int n)

 { int i, j, temp;

 for(i=n-1; i>0; i--)

 for(j=0; j<i; j++)

 if(a[j] > a[j+1])

 { temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp; // swapping elements

 }

 }

 C-Family 176 Sortings

The main() function to test the bubble sort

 void main()

 { int a[]={12 , 45 , 22 , 34 , 15 , 67, 19}, i; // 7 elements initialized

 printf(“\n before sorting, the elements are :”);

 for(i=0; i<7; i++)

 printf(“%d “, a*i+);

 bubbleSort(a,7);

 printf(“\n after sorting, the elements are :”);

 for(i=0; i<7; i++)

 printf(“%d “, a*i+);

 }

output: before sorting, the elements are: 12 , 45 , 22 , 34 , 15 , 67, 19

 after sorting, the elements are: 12 , 15 , 19 , 22 , 34 , 45 , 67

Analysis of bubble sort

to sort 1st big element, the inner loop take n-1 comparisons

to sort 2nd big element, the inner loop take n-2 comparisons

thus all iterations take

 n-1 comparisons in 1st iteration.

 n-2 comparisons in 2nd iteration.

 2 comparisons in n-2th iteration.

 1 comparison in n-1th iteration.

then total number of comparisons taken by if(a[j]>a[j+1]) is :

 n-1+n-2+.....+2+1  n*(n-1)/2 n2/2 (approximately)

but swapping takes extra time. If a[j]>a[j+1] is true then swapping occurs.

 Then total no.of swaps are n2/2.

But each swapping takes 3 operations, then the total no. of operations are 3*n2/2.

Consider all the time, the condition a[j]>a[j+1] may not be true, if we take average  3*n2/4

Total no. of operation required for bubble sort = no. of comparisons + no. of swapping

 t(n) = n2/2 + 3*n2/4  5*n2/4

 t(n) = n2 (approximately)

 So, bubble sort takes n2 operations (n2 instructions need to be executed).

Bubble sort 2'nd method

Sometimes, the input array may be almost in sorted order except one or two elements. In this case, the

above algorithm takes unnecessary comparison in all iterations.

For example, let us take 5 elements 12 18 39 55 40. Here by swapping last two elements, the total

array gets sorted. So, after completion of 1st iteration of outer loop, the total array gets sorted and

successive iterations would not be required. Using following algorithm, we can achieve this solution, here it

stops the outer-loop when no swapping takes place in inner-loop. However, this algorithm is suitable when

we know the input data is almost in sorted order.

 void BubbleSort2(int a[] , int n)

 { int flag;

 for(i=n; i>0; i--)

 { flag=0;

 for(j=0; j<i; j++)

 { if(a[j] > a[j+1])

 C-Family 177 Sortings

 { temp=a[j]; a[j]=a[j+1]; a[j+1]=temp; // swapping

 flag=1;

 }

 }

 if(flag==0) break; //if no swapping occurred, then terminate the loop.

 }

 }

Selection sort

In selection sort, first it finds the smallest element in the array, and exchanges it with the first position

element. Next it finds the second smallest element and exchanges it with the second position element.

In this way selection sort works. Let us take 5 elements: 90, 30, 70, 10, 20

After every pass of outer loop, the elements is as follows

Before 1

st
 iteration 90 30 70 10 20

Before 2
nd

 iteration 10 30 70 90 20

Before 3
rd

 iteration 10 20 70 90 30

Before 4
th

 iteration 10 20 30 90 70

After 4th iteration 10 20 30 70 90

 void selectionSort(int a[] , int n)

 { int i, j, smallPos;

 for(i=0; i<n; i++)

 { smallPos=i; // assume a[i] is the i
th

 small, so take its position to ‘smallPos’

 for(j=i+1; j<n; j++) // loop to find small in remaining elements in the array

 { if(a[Pllmmsos] > a[j])

 smallPos=j; // if a[j] smaller than a[i] , then take its position to ‘smallPos’

 }

 swap(&a*smallPos+ , &a*i+);

 }

 }

Time complexity
 In the inner loop, the total no. of comparisons in all iteration takes as

n-1 comparisons in 1st iteration

n-2 comparisons in 2nd iteration

2 comparisons in n-2'th iteration

1 comparisons in n-1'th iteration

Then total no. of comparisons taken by if(a[Pllmmsos] > a[j]) are

n-1+n-2+n-3+...+3+2+1(n-1*n)/2this is proportional to n2/2.

 But extra operations are required for finding smallest position.

That is, if a[pos]>a[j] condition is true then”smallPos=j” assignment takes place

So total no. of assignments are n2/2.

 C-Family 178 Sortings

Consider all the time the condition a[Pllmmsos]>a[j] may not be true ,then if we take average

assignments then it is n2/4.

 swapping elements in every outer-loop takes ‘n’ operations.

But swapping takes three operations, so it takes 3*n.

 Now total no. of operations = total comparisons + total assignments + total swapping

= n2/2 + n2/4 + 3 * n  this is proportional to n2

Difference between Bubble sort and Selection sort
In this two sorting techniques, the selection sort is always better than bubble, because in selection sort, the

no.of swapping are only N.

No.of operations in both sorting takes n2
. But selection sort is the chocie for sorting files with huge records

and small keys(primary keys). For such application, the cost# moving the data dominates the cost of making

comparisons, and no algorithm can sort a file with substantially less data movement than selection sort.

Let us say file contained 1000 records, and each record* contains 20 fields then frequent swapping in the

inner loop of bubble sort takes lot of time. for example say, each field size is 45 bytes then 20*45 bytes of

data has to exchange in each record.

Where as in Selection sort, we are finding smallest record position and finally exchanging it with first

position. In this way the total no. of swapping is 'N', that is, swapping records occurs only N times. where as

in bubble, the average swapping occurs N2/4 times. So, selection sort is always better than to Bubble.
*Record : records is nothing but a collection of fields. for example customer record in a bank: Account holder name

account no account type sex age address balance
#Cost: cost means time, here the time is calculated in terms of cost.

Insertion sort

Insertion sort inserts elements in proper places among those already in sorted order (those are sorted by

previous iterations of loop). It shifts all previous bigger elements to right hand side, so that we get a gap to

insert new element in its proper position.

How insertion sort works?

Let us take first ‘k-1’ elements in the array (sub array) and assume these are already in sorted order (sorted

by previous iterations of loop). Now take kth element, compare it with previous position elements and shift

all previous bigger elements to right hand side so that we get a gap, where insert kth element. These inserted

positions may not be a final position, as they have to be moved again to make a room for further smaller

elements, which may be encountered later.

Let us observe following elements:

 10 12 16 18 19 34 14 30 35 38 55 58 40 60

For easy understating, let us take two elements 14 & 40 have to be sorted. Now take 14 and compare with

previous elements one by one and move all bigger elements (34, 19, 19, 18, 16) to right side, so that we get

a gap at 16 element place, where insert 14. In this way, insertion sort works. But this process starts from

2nd element.

 C-Family 179 Sortings

Step by step procedure to sort elements (algorithm)
Step1: Pickup a[1], compare it with previous element a[0]. If a[0] > a[1], then shift a[0] to right side and

 insert a[1] in place of a[0].

Step2: Now first two elements themselves in sorted order, pickup a[2] and compare it with previous

elements a[1] & a[0], shift bigger to right side and then insert a[2] in the gap.

Step3. Repeat this process for all remaining elements.

 void insertionSort (int a[] , int n)

 { int temp;

 for(i=1; i<n; i++)

 { temp=a[i]; // now sorting a[i]

 for(j=i-1; j>=0; j--) // loop to compare with previous elements

 { if(a[j] > temp) // if previous element is bigger then

 a[j]=a[j+1]; // moving a[j] to a[j+1] to right side

 else

 break; // if previous element is small then stop the loop

 }

 a[j+1]=temp; // insert element in rightful (gap) place

 }

 }

Analysis of insertion sort

Best case: If input data already in sorted order then insertion sort takes only O(N) time only, because the

inner loop each time terminates immediately by break. So the total No. of operations time is O(N).

Average case: If input data is randomly distributed then insertion sort takes approximately N2/2.

(The inner loop terminates in the middle by break).

Total no. of comparisons are n2/2, if we take average then it is n2/4 (because loop may stopped in middle)

so It uses about N2/4 comparisons and N2/4 moves on the average.

So total no.of operations is N2/4 + N2/4  N2/2.

Worst case: If input data is in reverse order (descending order) then insertion sort takes N2 operations.

Because the inner loop will not be terminated in the middle

Then no.of comparisons are N2/2 + no. of moves of data are N2/2. T(N) = O(N2).

Finally, the running time of insertion sort depends on the total number of inversions (reverse order of

elements) in the file. But this takes less time than Bubble and Selection sort.

Comparison with other sorting techniques

Insertion sort is the best, when compared with selection and bubble sorts, because, in the average case

insertion sort takes only N2/2 units of time. It is difficult to prove theoretically, but practically insertion sort is

the best. But bubble and selection takes n2 units of time, if input is in any order.

In Other Cases: When the records are large size in file, then amount of time to move the data one place to

another place takes a lot of time, in this case selection sort is better than insertion sort, because selection

sort takes only N swaps.

Suppose in case of keys are strings then comparison of strings takes a lot of time than moving data one place

to another place. In selection sort no. of comparison greater than insertion sort, so in this case, insertion

sort is the best even though records are large size. (best reference book: algorithms by Robert Sedgwick)

 C-Family 180 Sortings

Searching techniques
Searching is the process of finding required key element in the group of elements.

We haves several techniques in computer science, the two basic techniques are

 1. Sequential or linear search

 2. Binary or two-way search

Sequential or linear search

Sequential means one after one, in this search, the elements are compared one by one in the array, if the

search-key is found, it returns the index position of such element, otherwise returns -1. Here array elements

may or may not be in sorted order. For example, searching for 89 in the following array at 6th position

int linearSearch(int a[], int n, int key)

{ int i;

 for(i=0; i<n; i++)

 { if(a[i]==key)

 return i;

 }

 return -1;

}

void main()

{ int a[200], n, i;

 printf(“enter number of input values to array :”);

 scanf(“%d”, &n);

 printf(“enter %d values to array:”,n);

 for(i=0; i<n; i++)

 scanf(“%d”, &a*i+);

 printf(“\n enter element to search :”);

 scanf(“%d”, &key);

 k=linearSearch(a, n, key);

 if(k ==-1) printf(“\n not found”);

 else printf(“\n element found at %d position”, k+1);

}

Binary search

The linear search is used when input file is small or elements are not in sorted order, it takes 0(n) time.

If elements are in sorted order, the binary search is the best choice, it takes <log2(n) time.

Step1: In binary search, the array is divided into three parts at middle position, the left sub-array, middle

 element, right sub-array.

Step2: If middle-element==searchKey, it returns index of middle-element and stops the process.

Step3: If middle-element < key, it continues search in left-sub-array as said in step-1.

Step4: If middle-element > key, it continues search in right-sub-array as said in step-1.

step5: Repeat step1 to step4 until left/right sub-array partition becomes<1 element or element found.

Following picture demonstrates searching for 43.

23 34 56 32 78 89 53 33

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

89

key

 C-Family 181 Sortings

Time Complexity of binary-search,

 Let array has N elements, and assume the N is almost equal to 2K (N ≈ 2k)

 At cycle1, the array size is N  (2K)

 At cycle2, the array size is N/2  (2K-1)  because at cycle2, we search in left/right sub-array.

 At cycle3, the array size is N/4  (2K-2)

 After cycle K, the array size is 1  20

 so it takes totally ‘K’ cycles, the total comparisons are: 1+1+1+ …k times (K comparisons)

 But we have to express total comparison in known value ‘N’ (not in K), by applying log in both sizes

 N ≈ 2k  k=Log2(N) , so finally binary search takes Log2N comparisons in worst-case.

 key

43

Low high

12 16 28 33 38 43 48 50 57 79

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

 key

43

 Low high

 43 48 50 57 79

 A[5] A[6] A[7] A[8] A[9]

 key

43

 Low high

 43 48

 A[5] A[6]

Source code for binary search

void main()
{ int a[200], n, i;
 printf(“enter number of values to array :”);
 scanf(“%d”, &n);
 printf(“enter %d values to array:”,n);
 for(i=0; i<n; i++)
 scanf(“%d”, &a*i+);
 bubbleSort(a , n); // sort values before searching
 printf(“\n enter element to search :”);
 scanf(“%d”, &key);
 k=binarySearch(a, n, key);
 if(k ==-1)
 printf(“\n element not found”);
 else
 printf(“\n element found at %d position”, k+1);
}

int binarySearch(int a[], int N, int key)
{ int mid, low, high;
 // the lower limit of array is 0, and higher limit is N-1
 low=0; high=N-1;
 while(low<=high) // repeat until partition size <= 1
 { mid=(low+high)/2;
 if(key==a[mid])
 return mid; // element found
 else if(key < a[mid])
 high=mid-1; // search in left sub array
 else
 low=mid+1; // search in right sub array
 }
 return -1; // element not found
}

57

key

 C-Family 182 storage classes

Scope, Accessibility & Storage Classes
Scope of variable: scope is the region, where the variable is available and accessible. First we discuss

about local scope which we define using braces {}. Some space in the program area which is surrounded by

pair of braces{} is said to be local-scope. In C, variables can be declared in any block in the program but they

must be declared in first-line of block open; such variables are called local variables and can’t be accessed

other than that block. Let us see some examples.

Example1: void main()
 {

 { int K; // here memory space creates for ‘K’

 k=100;
 }

 K=200; // here we get compile time error called “undefined symbol K”

 }

Here we get an error called “un-defined symbol k” at k=200, because, the ‘k’ has declared inside the inner

block, so it belongs to inner block and cannot be accessed/used outside. Now the scope of ‘K’ is said to be

this inner block and cannot be used outside. These variables are called local variables and scope belongs to

same block in which they are declared. Let us have one more example,

Example2: void main()

 { { int k; // memory space for ‘k’ creates here and scope belongs to this block only

 k=100;

 }

 { int k; // this ‘k’ is different from above ‘k’, here one more ‘k’ creates in the memory

 k=200;

 }
 }

Here two copies of ‘k’ variables will be created, both memory addresses are different. The first ‘k’ belongs to

first inner block and second ‘K’ belongs to second inner block.

Example3: void main()

 { int X;

 { int Y;

 Y=100;

 X=100; // outer-block variable can be accessed in inner-block

 }

 X=200 // here we don’t get any error, because, it is accessible

 Y=200; // here we get an error, because Y belongs to inner block and can’t be accessed outside.

 }

Example4: int X=100;

 void main()

 { int Y=200;

 show();

 }

 void show()

 { printf(“%d %d“ , X, Y); // error, undefined symbol ‘Y’

 }

 C-Family 183 storage classes

* Here the variable ‘Y’ has declared inside main() fn block, so it cannot be accessed in show() fn block, as it is

local to main() fn block. In this way one function’s local variables can’t be accessed in another function.

* Here the variable ‘X’ has declared at the beginning of program (outside all functions), now its scope is said

to be global and it can be accessed anywhere in the program (in all functions). So, ‘X’ can be shared in all

functions in the program.

Thus Scope is the region, where the variable is available and accessible. In C, scope is of three types:

local-scope, global-scope and file-scope. The entire program’s area is said to be global scope, whereas a

smaller region surrounded by a pair of braces {} is known as local scope. (file scope discussed later)

Local scope is the scope, surrounded by pair of braces{}, in C program, we can declare local variables

anywhere in the program, but they must be declared in first line of block-open as shown in above examples.

This block may belong to if-else, while-loop, for-loop, or function-block. This variable’s scope belongs to that

block and cannot be accessed outside. These are often called local/private variables.

Global scope is said to be entire program’s area. If any variable declared at the beginning of program

(outside all functions), then it is said to be global/public variable. Let see one more example,

 int X=100; // X is called global variable (now X is in global-scope)

 void main()

 { int Y=200; // Y is local variable, and belongs this main() fn block

 if(X < Y)

 { int Z; // Z is local variable, and belongs to this if-block only

 Z=300;

 }

 X=200;

 show(1000);

 }

 void show(int A) // A is local variable, belongs to this fn block, and also works as parameter

 { int B=100; // B is also local variable, and belongs to this show() fn block

 printf(“%d %d %d %d”, X, Y, Z, A, B) ; //error, here Y, Z are unknown to this fn block

 }

Overriding of variables
If any two variables are declared in inner and outer block with the same name, then two copies will be

created in the program, here the outer-block variable will be overridden by the inner-block variable when

the control presents in the inner-block. That is, when the control is in inner-block, then the preference is

given to inner-block variable.

 void main()

 { int k=10;

 { int k=20;

 { int k=30;

 printf(“ k = %d “, k); // output: k=30

 }

 printf(“ k = %d “, k); // output: k=20

 }

 printf(“ k = %d “, k); // output: k=10

 }

 C-Family 184 storage classes

Storage classes
We have 4 storage classes 1.auto, 2.static, 3.global, 4.register

auto & register are temporary variables, whereas static & global are permanent variables.

A variable that defined in the program possesses some characteristics such as data type and storage class.

Data type tells the memory size and value type, whereas storage class tells the behavior of a variable, such

as default initial value, scope, life-span and storage-place.

* Scope means region in which the variable is available and accessible. We have already discussed before.

* The default initial value is zero/garbage, temporary variables default value is garbage whereas permanent

 variables default value is zero.

* The life span specifies when the variable comes into existence and when it goes off, that is, when the

variable’s space gets created in the RAM(life starts) & when such space gets deleted from Ram(life ends).

 auto int x , y , z; // here the storage class of x, y, z is auto

static int p , q; // here the storage class of p, q is static

auto (automatic)
It is the default storage class for all local variables inside a block, that is, if any variable declared inside a

block, then by default it is auto storage class. So, the keyword ‘auto’ is optional for auto variables. Of course,

from the beginning of this book, we have been using ‘auto’ variables only.

example: auto int x, y, z; // this is equal to int x, y, z;

 auto float p, q; // this is equal to float p, q;

initial value: garbage is the default initial value. (if not initialized with any value)

scope: this variable can be accessed only within the block in which it is declared (already discussed above)

life: life is within a block as long as the control presence in that block. ie, when the control enters into a

block, all of its auto variable’s space is created (life starts) and when the control leaves the block, all such

variable’s space gets destroyed (life ends).

 void main()

 { test(); // calling 3 times

 test();

 test();

 }

 void test()

 { auto int k=10; // memory space of k is created here, when the control comes here

 printf(“ %d “, k);

 k++; // no use of incrementing before dying (just for demo this is given)

 } // memory space of k will be destroyed here, before returning to main() function

 output: 10 10 10

The variable ‘k’ will be created & destroyed 3 times upon calling test() function for 3 times.

When the control enters into the test() function’s body, the ‘k’ will be created & initialized with 10 and when

the control leaves the function, the ‘k’ will be destroyed. Hence the output is 10 10 10.

Of course, it is meaningless to survive the ‘k’ in the memory after finishing the function task. Therefore, all

auto variables will be destroyed before closing the function. But rarely some variables are needed to be

survived, where the ‘static’ storage class is the choice.

 C-Family 185 storage classes

static
This is also a local variable like auto, but space creates just before start of program (before main() fn starts)

and survived till the end of program, used to access/share previous function call values for next subsequent

calls. Unlike auto, the static is used to preserve the variable values even after closing the function. It will not

be recreated & reinitialized in every call of function. Only once the variable is created and exists till the end

of program. Scope belongs to local as auto, but initial value is zero.

The instruction static int k=10 executes only once just before main() fn starts (this instruction shifts to

before main() fn in machine code file), whereas printf(“ %d “, k); k++; executes 3 times for 3 function calls.

Example2

 void main()

 { for(i=0; i<5; i++)

 { auto int X=10;

 static int Y=10;

 printf(“\n %d %d”, X , Y); output: 10 10

 X++; Y++; 10 11

 } 10 12 … 5 times

 }

The ‘X’ creates and destroys 5 times and every time it initializes with 10, so output is 10 10 10 10 10.

Whereas ‘Y’ creates only once and initializes only once with 10, so output is 10 11 12 13 14.

register
Registers are small memory units available in the processor (ALU) itself, these are inbuilt memory units in the

processor’s ALU. Before doing any arithmetic operation, the input values are moved from RAM to registers

and then given operation takes place. So, arithmetic operations are performed with the help of registers.

We know, only 4 or 5 registers are available in the processor and always 1 or 2 are busy. So other unused

registers can be used for our variables, so that, they can have faster access. It saves the time to transfer

variable values between RAM & registers. This is very much suitable for frequently used variables like loop

variables. Only local integral types (char, int, long) are allowed as registers. The floating point types, arrays,

pointers and static/global types are not allowed. Anyway, the keyword register is not a command, is just a

request to the compiler, because, if registers are not available then space allocates in the RAM.

The other behavior like scope, life, and default-initial value is same as auto type.

Example: register int a, b, c, d, e;

 register float x, y, z; // error, float are not allowed

In the above declaration, all (a, b, c, d, e) may not be allocated in the registers, because, we have limited

number of registers. The x, y, z cannot be taken as register as they are float type. See following picture, here

the register names are: AX, BX, CX, DX, SX, etc

 void main()
 { test();
 test();
 test();
 }

 void test()
 { static int k=10;
 printf(“ %d “, k);
 k++;
 }
 output: 10 11 12

 C-Family 186 storage classes

RAM

 Registers in
Processor

 Circuits of
Processor ALU

Byte1 Byte2 Byte3 …. AX register Addition circuit

 BX register Subtraction circuit

CX register Multiplication circuit

 DX register ……

global
Already we have discussed about these variable while discussing in global scope. Let us see more detailed.

As we know, one function’s local variable can’t be accessed in another function, but sometimes, some

variables need to be accessed throughout the program (in several functions) then we declare in global

scope(outside of all blocks). Global scope is the region that doesn’t belongs to any specific function or block,

it belongs to entire program. Global variables preferably declared at the beginning of program or in a

separate file. These variables life span is till the end program (same as static). The word global is not a

keyword and hence it is not required while declaration of variable.

 int k; //now the ‘k’ is global and default value is zero

 void main()

 { printf(“ k = %d”, k);

 test();

 printf(“, k = %d”, k);

 }

 void test()

 { k++;

 }

Output: k=0, k=1, the variable ‘k’ is now global and can be accessed (shared) in both functions.

The static & global variable’s life-scan & initial-values are same but scope is different.

The auto & register variable’s scope and initial-value are same, but storage place may not be same.

storage place of variables (stack area and heap area)
The program’s memory divide into code & data area, the code area contains instructions whereas data area

contains variables, string-constants, etc. The data area is again classified into stack & heap area. The stack is

the place where temporary variables are stored & managed, and in the heap area, the permanent variables

are managed. (The stack & heap are predefined Data Structures in OS level).

By default, stack variables contain garbage values, whereas heap variables contain zeros. For example:

 auto int x; // ‘x’ contain garbage value

 static int y; // ‘y’ contain zero value

 the program’s data area is as follows

Global
variables

Static
variables

String
constants…

Auto
variables

Register
variables

Function
return-address

Heap Area (permanent variable’s area) Stack Area (temporary variable’s area)

 C-Family 187 storage classes

extern (proto-type)
If program is very big, obviously its code may distribute into several files and each file may contain several

functions. Here, each file can be compiled independently and produced object file, later all such produced

object files can be linked together. In this compilation process, we get some problems. If one file uses global

variable but it is declared in another file then we get undefined-symbol errors. To avoid this type of errors,

we need to specify the proto-type of global variable using keyword extern.

After compiling the 1st and 2nd program files separately, the object code for those files will be created with

the file names “dis.obj” and “main.obj”. Suppose, if we are using Turbo C, then the command line usage of

the compiler will be as follows

 tcc –IC:\tc\include –c dis.c

 tcc –IC:\tc\include –c main.c

Here “–I” specifies the include path of library functions, and “-c” is for only compilation.

Suppose if we are using C on UNIX system, then the method for using the compiler ‘cc’ is

 cc –c dis.c //-c is for only compilation and not creating machine code file
 cc –c main.c

the above two commands will create the object files “dis.obj” and “main.obj” respectively. (in Unix it is dis.o

and main.o) Now link these object files using the linker command. (Generally, the compiler itself can handle

the linking job). The command line usage of the TCC will be as shown in the below example:

 TCC –Lc:\tc\lib main.obj dis.obj

here –L specifies the library files path. To do the same with UNIX’s CC

 CC main.o dis.o final.exe

The above command will create the executable binary file with name “final.exe”

This extern keyword can also be used with function proto-types. This is especially when we want to access a

function that is defined in other files or external pre-compiled modules. For example

Program file1: “dis.c” Program file2: “main.c”

void display()
{
 printf(“ experience =%d”, num);

}

 extern void display(); // declaration of function

void main()
{ display();

}

Program file1: “dis.c” Program file2: “main.c”

extern int num; // not declaration, it is a proto-type

void display()
{ printf(“ experience =%d”, num);

}

 int num=14; //declaration global of variable

void main()
{ display();

}

 C-Family 188 storage classes

File scope

These variables are declared using static keyword in global scope, usually, file scope variables are declared

at the beginning of file, so that, they can be accessed all functions within that file. File scope variables are

local to one file and they cannot be accessed outside of file.

Program file1: “dis.c” Program file2: “main.c”

extern int exp; // not declaration , it is a proto-type

void display()
{ printf(“ experience =%d”, exp);

}

 extern void display();

static int exp=14; //global to this file only

void main()
{ display();

}

If we compile these two files separately, we don’t get any error, but at linking time, we get an error called

“undefined symbol exp” in display() function. Because the variable “exp” is local to “main.c” file, since it is

declared as static, therefore it is not accessible other than this file.

 C-Family 189 pre-processor directives

Preprocessor Directives
Before knowing about preprocessor directive, let us have one example, following program calculates the

area & perimeter of circle.

 void main()

 { float area, perimeter, radius;

 area = 3.14 * radius * radius;

 perimeter = 2 * 3.14 * radius;

 }

For example, if we wrote a big application, where we used pie value 3.14 in many times, say more than 50

times, after some days, if this value needs to be changed 3.14 to 3.145 then it takes lot of effort to change in

all places. If we missed in one or two places then it gives wrong output.

In such situations we think for a solution, it would be good, if it modified in one place, will affect to the total

program. For that, preprocessor directive is the alternative, here we use #define statement like given below

 #define PIE 3.14 // do not give semicolon at end

 void main()

 { float area, perimeter, radius;

 area = PIE *radius*radius;

 perimeter = 2*PIE*radius;

 }

At compile time, the symbol ‘PIE’ replaces by 3.14 in every usage in the program, this replacement effects in

executable file not in our source code file. If any changes needed in future then we simply modify the code

at macro and recompile it, the compiler will generate a new ‘exe’ file by replacing old ‘exe’ file. This new exe

file updated to new value. In this way, we automate repeated constants using #define directive.

It is mandatory to symbolize the repeating constants, so that they can be easily remember and modify later

time. In this way wherever the pie value 3.14 is required, we can use PIE symbol.

--

What is the preprocessor? The preprocessor, as its name implies, is a program, which

performs some kind of text manipulations just before compilation begins. It provides some facilities like

automating repeated constants, simplifies complex math equations, providing conditional compilation,

combining two or more files…etc. Actually, this is not an inbuilt feature of c-compiler, this is an additional

tool kit which helps the programmer.

Note: All preprocessor directives start with #(hash) symbol, and we can use these statements anywhere in

the program. The directives are #define , #include , #if , #else , #endif , #elif , #ifdef , #ifndef , #undef , etc

Remember, the pre-processor directive generates a new temporary file and this file is given to the compiler

as given below picture. It do not modify our source file, it creates new temporary file where it replaces PIE

with 3.14. Thus compiler does not know about #define, #include statements.

 C-Family 190 pre-processor directives

More about macro directive #define
#define is called macro directive, defines symbolic constants and equations.

The syntax is: #define macro-name replacement-expression

This macro directive defines a macro-name for a given replacement-expression. The replacement-expression

is substituted in every occurrence of macro-name in the source file. The replacement-expression can be

anything like constant, equation, string, etc. Let us have one more example.

Note: It is good programming practice giving macro-names in full capital letters, so that, one can easily

identify the macros in the programming. Actually, in software industry everybody follows this convention.

I strongly recommend you to follow this rule for convenience.

Defining macro like function
The #define directive has another powerful feature, which can be used as simple function. Generally, it is

used for simple mathematical equations, complex expressions and for simple functions. The macro function

can have parameters and these are substituted at the time of pre-processing.

Syntax: #define macro-name(parameters) replacement-expression-with-parameters

file-name “ sample.c ” file-name “ sample.temp ”

#include<stdio.h>
#define PIE 3.14
void main()
{ float area, peri, radius;

 area=PIE *radius*radius;
 peri=2*PIE*radius;

}

 After
pre-processing

void main()
{ float area, peri, radius;

 area=3.14 *radius*radius;
 peri=2* 3.14 *radius;

}
observe, here there is no #define
or #include statements.
this file is given to the compiler

#define ONE 1
#define TWO ONE+ONE
#define THREE TWO+ONE
#define show printf
void main()
{ show(“\n %d “,ONE);
 show(“\n %d “, TWO);

 show(\n %d “,THREE);
}

 After pre-processing, the program is
void main()
{ printf(“\n %d “,1);
 printf(“\n %d “,1+1);
 printf(“\n %d “,1+1+1);
}
Observe that, here macro statements
vanished by the preprocessor, so the
compiler does not know about these
directives

#define sum(x,y) (3*x + 4*y)
void main()
{
 printf(“\n %d”, sum(7,8));
}

Code after
pre-processing

void main()
{
 printf(“\n %d”, (3*7+4*8));
}

 C-Family 191 pre-processor directives

Advantages of macro over function
 Macros does not make any function calls, instead it paste the replacement-expression in every use of

macro. Hence we can avoid over-head of function call and return. As we know, the function call consumes

extra space and time for jumping & returning the control, creating & destroying of local variable’s

space...etc. For simple functions, this time dominates function task. In this case, it is better to convert into

macro, so that, we can save time & space. Simple function means having one to two lines of code.

 No need of specifying data types for the parameters, hence, we can use same macro with different data

 items. For example, the above macro sum(x, y) works with all data types like sum(4.5, 5.4) of float type.

Disadvantages with macros
 If macro replacement-expression is bigger, containing more lines of code and used many times then the

size of machine code will be increased, because, in every usage of macro the replacement-expression will

be pasted. In this case, normal function is the choice.

 There is no syntax error checking for macros, so it blindly pasts the replacement-expression.

 #define sum(x) (x$x)

 void main()

 { printf(“ output = %d”, sum(5)); // here macro pasts as (5$5)

 }

Here by mistake, the user has given the ‘$’ instead of ‘+’, the macro blinds pastes without checking any

error. As a result, the compiler shows an error at printf() statement.

Let us see another example,

 #define sum(x) x+x; // this semicolon creates a problem

 void main()

 { int k;

 k=sum(4)*sum(5); // the compiler shows error at this line

 printf(“%d “, k);

 }

Here the expression k=sum(4)*sum(5); replaces as k=4+4;*5+5;; // so this semicolon creates a problem.

#include directive
Generally, we break down a big application into several functions and we write in several files, later these

files are combined using #include directive. This directive combines two or more files into a single file.

It is used to join the contents of one file into another file, we have 3 syntaxes

 syntax1: #include “file name”

 syntax2: #include ”path + filename”

 syntax3: #include <file name>

The first syntax is used, when the include file is in current working directory.

The second syntax is used, when the include file is in some other directory.

The third one, when the include file is in C-software directory.

For example:

 C-Family 192 pre-processor directives

here the file “main.c” contained main-program, “sub.c” file contained sub-program and the sub-file should

be included as

These two files will be clubbed into single and then given to the compiler (as shown above). In this way, we

can attach as many files as we want in the program. The sub file (included file) can have many functions but

required (called) functions only be attached to the executable file. In this manner, the C-header files

contained proto type of all functions and we must include these files for avoiding errors.

Conditional Compilation
It is possible to compile selected portions of your program’s source code. This process is called conditional

compilation and it is used widely by commercial software houses that provide and maintain many

customized versions of one program.

As we know, these days, all commercial software designed keeping in mind all the aspects of related

organizations in nature. For example, one bank’s software can be utilized in another bank with a few

modifications. We cannot determine and finalize all the details of an application at the time of program

development, for example, regarding of OS, hardware, services,…etc. Therefore, while developing software,

the programmer must predict all possibilities that occurs later stages, thereby, it is needed to write the code

for all possibilities so that we can add, remove, or modify the code according to the organizations required

by the customer(client) before installation of software. In this way, the generic program can be changed

according before delivering software with help of preprocessor. Let us see one example
 #define COUNTRY 1 // 1-India, 2-US, 3-France, 4-England,…

#if COUNTRY==1

 char curr*+=”Rupees”;

#elif CUNTRY==2

 char curr*+=”Dollor”;

#else

 char curr*+=”No currency defined”;

#endif

void main()

{ printf(“our currency = %s”, curr);

}

By changing country code in first line, the corresponding currency name is applied to the ‘curr[]’

main file “main.c” sub name “sub.c” File name “main.temp”

#include “sub.c”
void main()
{
 printf(“%d”, fact(5));
}

 int fact(int n)
 { long int f=1;
 while(n>1)
 f=f*n--;
 return(f);
 }

Code after
pre-processing

After pre-processing,
the sub.c file’s code
is pasted in main.c as

int fact(int n)
{ int f=1;
 while(n>1)
 f=f*n--;
 return(f);
}
void main()
{ printf(“%d”, fact(5));
}

this file is given to compiler

 C-Family 193 pre-processor directives

#ifdef, #ifndef and #undef
These is another method of conditional compilation, used to check whether a given symbol is already

defined with #define or not. Based on this decision, we can add/subtract some code while compiling.

The Syntax is as follows

 #ifdef maco-name

 statement1

 statement2

 …

 #endif

example1 example2

#define SIZE 100

#ifndef SIZE
 #define SIZE 200
#endif

void main()
{
 printf(“\n the size = %d”, SIZE);
}
Output: the size = 100

#ifndef SIZE
 #define SIZE 200
#endif

void main()
{
 printf(“\n the size = %d”, SIZE);
}

Output: the size = 200

 Example 3: Let us see one more practical example

In the above program, unfortunately the “factorial.c” file is included two times. At compile time, the

preprocessor includes two copies of “factorial.c” file code in the program. As a result, we get an error at

compile time. To avoid this type of errors, it is better to attach the macro check condition. This is as …

In the above code, at 1st time of inclusion of file, the symbol FACT is not yet defined, therefore the file

“factorial.c” includes to the “main.c” file, and same time the FACT defines to 1.

In 2nd time inclusion, the FACT has already been defined; therefore it will be skipped by the #ifndef directive.

File name “main.c” Sub file “factorial.c”

#include “factorial.c”
#include “factorial.c”
void main()
{
 printf(“factorial = %ld”, fact(5));
}

 long int fact(int n)
{
 long int f=1;
 while(n>1)
 f=f*n--;
 return(f);
}

Sub file “factorial.c”

#ifndef FACT
 #define FACT 1
 long int fact(int n)
 {
 long int f=1;
 while(n>1)
 f=f*n--;
 return(f);
 }
#endif

 C-Family 194 pre-processor directives

#undef
This directive removes a previously defined definition of the macro-name, for example

#error
Suppose programmer wants to show an error message if specific macro was not defined previously in the

program. In those cases, we may use this #error to produce an error and to stop the compilation. This #error

stops the compilation based on given condition. For example

 #ifdef PIE

 #define Area(r) (PIE*r*r)

 #define Perimeter(r) (2*PIE*r)

 #else

 #error “the symbol PIE not defined”

#endif

If we compile the above program, we get an error message, because the symbol “PIE” has not been defined

in the program.

void main()
{
 #define X 20
 printf(“%d “, X);
 #undef X

 printf(“%d “, X);
}

after
preprocessing

void main()
{
 printf(“%d “, 20);
 printf(“%d “, X);
}

Error :undefined symbol “X”

 C-Family 195 2D-Arrays

Two Dimensional arrays
Often there is a need to store and access two or three dimensional array data structures especially while

dealing with matrices, tables, string, files... We can declare & access as many dimensions as we need in the

programming.

Syntax: data-type array-name [size1][size2][size3]….;

For example: int x[3][5]; // two dimensional array

 int x[3][4][5]; // three dimensional array

 int x[3][4][5][6]; // four dimensional array

2D arrays: int x[3][5]; Here the value 3 represents row-size, 5 represents column-size.

Then the 2D array is as follows

Scanning 2x4 matrix data and displaying on the screen

 void main()

 { int x[2][4], i, j;
 // scanning data to 2D array

 for(i=0; i<2; i++)

 { for(j=0; j<4; j++)

 { printf(“enter value of x*%d+*%d+ :”, i, j);

 scanf(“%d”, &x*i+*j+);

 }

 }
 // printing 2D array data

 for(i=0; i<2; i++)

 { for(j=0; j<4; j++)

 printf(“%d ”, x*i+*j+); // printing each element

 printf(“\n”); // inserting new line after each row

 }

 }

Nested loops are required for scanning & printing 2D array data. Outer loop is for rows and inner loop is for

columns. Here ‘i’ loop is to scan 2-rows, whereas ‘j’ is to scan 4-columns in each row.

If input numbers are 25, 61, 92, 53, 45, 67, 90, 55, then let us see how the program asks the user and stores

into given array

R
o
w
s

Columns

x[0][0] x[0][1] x[0][2] x[0][3] x[0][4]

x[1][0] x[1][1] x[1][2] x[1][3] x[1][4]

x[2][0] x[2][1] x[2][2] x[2][3] x[2][4]

enter value of x[0][0] : 25
enter value of x[0][1] : 61
enter value of x[0][2] : 92
enter value of x[0][3] : 53
enter value of x[2][0] : 45
enter value of x[2][1] : 67
enter value of x[2][2] : 90
enter value of x[2][3] : 55

25 61 92 53

45 67 90 55

 C-Family 196 2D-Arrays

Initialization of two dimensional arrays

 We can initialize in two ways, first one is like 1D-array, second one is by enclosing each row with { }.

Second method is clear and easy to understand. This method is recommended when the initializing values

are more.

 int a[2][3]={ 51, 35, 67, 45, 23, 21 };

 int a[2][3]={ {51, 35, 67}, {45, 23, 21} };

 int a[2][3]={ 51, 35, 67 }; // only first row is initialized, and remaining is zero.

 int a[][3]={ 51, 35, 67, 45, 23, 21 }; // the row-size is 2, automatically calculated by compiler based on values.

 int a[][3]={ {51, 35, 67}, {45, 23, 21}, {44,55,67} }; // here the row-size is 3

In the last two declarations, the row size automatically calculates by the compiler. Here, the row-size equal

to (number-of-elements)/(column-size). The column size is mandatory while declaration of array.

 inta[2][]={ {1,2,3}, {4,5,6} } // error, the column size must be required

Adding elements of 3x3 matrices and printing on the screen

This program adds two matrices of 3x3 size and prints the result. Consider the source matrices A,B already

initialized with some assumed values.

Adding two matrices of given input size

This demo program adds two matrices with a given input values instead of initialized values unlike above

program. Here the size of matrices (order of matrix) and its data chosen by the user at run time. Therefore,

these values should be accepted from keyboard.

 void main()

 { int a[10][10], b[10][10], c[10][10] , r1, r2, c1, c2, i, j;

 printf(“\n enter sizes of 1st matrix :”);

 scanf(“%d%d”, &r1, &c1);

 printf(“\n enter sizes of 2nd matrix :”);

 scanf(“%d%d”, &r2, &c2);

 if(r1 != r2 || c1 != c2)

 { printf(“sizes not equal, cannot be added”);

 exit(0);

 }

void main()
{ int a[2][3]={ {1,2,3}, {4,5,6}, {7,8,9} };
 int b[2][3]={ {9,8,7}, {6,5,4}, {3,2,1} };
 int i, j;
 for(i=0; i<3; i++)
 { for(j=0; j<3; j++)
 c[i][j]=a[i][j]+b[i][j];
 }
 // displaying result of the matrix

 for(i=0; i<3; i++)
 { for(j=0; j<3; j++)
 printf(“ %d “, c*i+*j+);
 printf(“\n”);
 }
}

1 2 3

9 8 7

4 5 6 6 5 4

7 8 9 3 2 1

A[][] B[][]

output matrix c[][] is:
 10 10 10
 10 10 10
 10 10 10

 C-Family 197 2D-Arrays

Finding biggest of each row & column of 2D array data (R X C size matrix)

 void main()

 { int a[10][20], r, c, i, j;

 printf(“enter row and column size of input matrix :”);

 scanf(“%d%d”, &r, &c);

 for(i=0; i<r; i++)

 { for(j=0; j<c; j++)

 { printf(“ enter element of *%d+*%d+ :”, i, j);

 scanf(“%d”, &a*i+*j+);

 }

 }

 printf(“\n enter the elements of 1st matrix”);
 for(i=0; i<r1; i++)
 { for(j=0; j<c1; j++)
 { printf(“ enter element of a*%d+*%d+ :”, i, j);
 scanf(“%d”, &a*i+*j+);
 }
 }
 printf(“\n enter the elements of 2nd matrix”);
 for(i=0; i<r2; i++)
 { for(j=0;j<c2;j++)
 { printf(“ enter element of b*%d+*%d+ :”, i, j);
 scanf(“%d”, &b*i+*j+);
 }
 }
 // adding two matrices

 for(i=0; i<r1; i++)
 for(j=0; j<c1; j++)
 c[i][j]=a[i][j]+b[i][j];
 printf(“\n output matrix is \n:”);
 for(i=0; i<r1; i++)
 { for(j=0;j<c1;j++)
 printf(“ %d ”,c* i+*j+);
 printf(“\n”);
 }
}

Input:
 Enter the size of 1

st
 matrix : 2 3

 Enter the size of 2
nd

 matrix : 2 3

 enter the elements of 1

st
 matrix

 enter element of a[0][0] : 7
 enter element of a[0][1] : 3
 enter element of a[0][2] : 2
 enter element of a[1][0] : 4
 enter element of a[1][1] : 6
 enter element of a[1][2] : 2

 enter the elements of 2

nd
 matrix

 enter element of a[0][0] : 2
 enter element of a[0][1] : 4
 enter element of a[0][2] : 5
 enter element of a[1][0] : 6
 enter element of a[1][1] : 8
 enter element of a[1][2] : 1

output: 9 7 7
 10 14 3

Input:
 23 55 66 7
 31 12 61 17
 5 14 98 47
 2 24 8 97

Output:
 row1 big = 66
 row2 big = 61
 row3 big = 98
 row4 big = 97

 C-Family 198 2D-Arrays

 printf(“\n each row output \n”);

 for(i=0; i<r; i++)

 { big=a[i][0]; // let us assume 1
st

 column element is big

 for(j=1; j<c; j++)

 { if(big < a[i][j]) // comparing big with rest of elements in the row
 big=a[i][j];

 }

 printf(“\n biggest of row %d = %d ”, i+1, big);

 }

 printf(“\n each column output \n”);

 for(j=0; j<c; j++)

 { big=a[0][j]; // let us assume 1
st

 row element is big

 for(i=1; i<r; i++)

 { if(big < a[i][j]) // comparing big with rest of elements in the column
 big=a[i][j];

 }

 printf(“\n biggest of column %d = %d ”, j+1, big);

 }

 }

Transposing MxN matrix

Transposing is nothing but changing values from rows to columns and columns to rows

Multiplying two matrices and displaying the result.

Consider the source matrices A, B with the input sizes r1*c1 and r2*c2.

Before multiplying, the program checks the order of matrices; the size c1 must be equal to r2. If sizes are

not equal then shows an error message “cannot be multiplied” and closes the program.

The output matrix size will be m1xn2.

#define M 3
#define N 4
void main()
{ int A[M][N] = { {1, 2, 3, 4},
 {5, 6, 7, 8},
 {9, 10, 11, 12},
 };
 int B[M][N], i, j;
 // transposing elements from A[][] to B[][]

 for(i=0; i<M; i++)
 for(j=0; j<N; j++)
 B[i][j] = A[j][i];
 printf("Result matrix is \n");

 for(i = 0; i < N; i++)
 { for(j=0; j< M; j++)
 printf("%d ", B[i][j]);
 printf("\n");
 }
}

 ip:
 1 2 3 4
 5 6 7 8
 9 10 11 12

op: 1 5 9
 2 6 10
 3 7 11
 4 8 12

 C-Family 199 2D-Arrays

 void main()

 { int a[10][10], b[10][10], c[10][10];

 int r1, r2, c1, c2, i, j, sum;

 printf(“\n enter size of input matrix :”);

 scanf(“%d%d”, &r1, &c1);

 printf(“\n enter size of second matrix :”);

 scanf(“%d%d”, &r2, &c2);

 if(c1 != r2)

 { printf(“sizes not equal, cannot be multiplied”);

 exit(0);

 }

 printf(“\n enter elements of first matrix :”);

 for(i=0; i<r1; i++) // loop to multiply 1
st

 matrix of each row

 { for(j=0; j<c2; j++) // loop to multiply 2
nd

 matrix of each column

 { sum=0;

 for(k=0;k<c1;k++) // loop to multiply to get element of output matrix
 sum = sum + a[i][k] * b[k][j];

 c[i][j]=sum;

 }

 }

 printf(“\n output matrix is \n:”);

 for(i=0; i<r1; i++)

 { for(j=0;j<c2;j++)

 printf(“ %d ”,c*i+*j+);

 printf(“\n”);

 }

 }

Observe the multiplication stages carefully, it contained 3 loops, 1st loop is for maintaining the row index of

1st matrix, and 2nd loop is for column index of 2nd matrix. The 3rd loop is to keep the track of sum of products

of row wise of 1st matrix with the columns wise of 2nd matrix. Finally this sum is assigned to the target

matrix of relevant position.

Accepting marks details of ‘N’ students and printing result

This demo program accepts ‘N’ number of student details and prints the result.

Suppose if each student has 4 subjects then result will be displayed using following conditions.

 If student obtained <40 in any subject, then print “failed”, otherwise

 If student obtained avg>=80 then print “passed in A-Grade”

 If student obtained avg 80 to 60 then print “passed in B-Grade”

 If student obtained avg<60 then print “passed in C-Grade”

input: enter number of students: 3

 60 49 40 50

 10 20 30 40

 70 50 90 80

 C-Family 200 2D-Arrays

output: idno marks1 marks2 marks3 marks4 total average result

 ===

 1 60 49 40 50 199 49 C-Grade

 2 10 20 30 40 100 25 Failed

 3 70 50 90 80 290 72 B-Grade

 void main()

 { int a[100][4]; // let the maximum number of student are 100, and subjects are 4.

 int i, j, total[100], avg[100], n;

 char result[100][20];

 printf(“enter number of students :”);

 scanf(“%d”, &n);

 for(i=0; i<n; i++)

 { printf(“enter student %d marks of sub1, sub2, sub3, sub4 :”);

 scanf(“%d%d%d%d”, &a*i+*0+, &a[i][1], &a[i][2], &a[i][3]);

 }

 for(i=0; i<n; i++) // calculating total, avg and the result.

 { for(j=0; j<4; j++)

 total[i]=a[i][j]+a[i][j]+a[i][j]+a[i][j]);

 avg[i]=total[i]/4;

 if(a[i][0]<40 || a[i][1]<40 || a[i][2]<40 || a[i][3]<40)

 strcpy(result*i+, “Failed”);

 else if (avg[i] >= 80)

 strcpy(result*i+, “A-Grade”);

 else if (avg[i] >= 60)

 strcpy(result*i+, “B-Grade”);

 else

 strcpy(result*i+, “C-Grade”);

 }
 // printing result

 printf(“ student idno marks1 marks2 marks3 marks4 total avg result “);

 printf(“\n===”);

 for(i=0; i<n; i++)

 printf(“\n %d %d %d %d %d %d %s“, a*i+*0+,a*i+*1+,a*i+*2+,a*i+*3+);

}

 C-Family 201 2D-Arrays

2D arrays and pointers
Before knowing how to make a pointer to a multi-dimensional array, let us know, how a multi-dimensional

array is stored in the memory? And how elements are accessed in different ways?

The two dimensional array data is also stored like single dimensional array, because the RAM is constituted

as order collection of bytes. It is not like table, or matrix or in other form, it is like an array of continuous

bytes. So the 2D and other dimensional arrays also occupy as 1D-array in the memory, this is as …

For example: int x[3][5] = { {1,2,3,4,5}, {6,7,8,9,10}, {11,12,13,14,15} };

In one dimensional arrays, the expression x[i] can be written in pointer form as *(x+i)

lly, In two dimensional arrays, the x[i][j] can be written in pointer form as *(x[i]+j) or *(*(x+i)+j)

But implicitly the expression x[i][j] is converted as *(x+i*column-size+j). This equation is called row-major

order formula. This method used by compiler implicitly to access elements in the 2D-array, because, the row

elements are expanded in column-wise. (Some other languages use column-major order formula)

Let us see how elements are accessed in 2D array

 x[i][j]  *(x+i*column-size+j).

 x[0][0] *(x+0*5+0)  *(2000+0)  *2000 1

 x[0][1] *(x+0*5+1)  *(2000+1)  *2002  2 // integer address increments by 2

 x[1][0]  *(x+1*5+0)  *(2000+5)  *20010  6

 x[1][1] *(x+1*5+1)  *(2000+6)  *2012  7

 x[2][0]  *(x+2*5+0) *(2000+10)  *2020  11

 x[2][1] *(x+2*5+1)  *(2000+11)  *2022 12

 Here the expression ‘x’ gives array base address.

 That is, the expression x&x[0][0]; // &x[0][0] &*(x+0*5+0)  x2000

 In one dimensional arrays, the expression x[i]  *(x+i);

 In two dimensional arrays, the expression x[i]  (x+i*column-size)  gives ith row address.

 x[0] (x+0*5)  x2000  gives 1st row address

 x[1] (x+1*5)  x+52010  gives 2nd row address

 x[2] (x+2*5)  x+10  2020  gives 3rd row address

Here special types of pointers are used to access the 2D array elements. For example

 int (*p)[3];  pointer to 2d-array where the column size is 3. The row size can be anything.

 int (*p)[3][4];  pointer to 3d-array where the row-column sizes are 3-4, table size can be anything.

Let us see one example

1st row 2nd row 3rd row

X[0][0] X[0][1] X[0][2] X[0][3] X[0][4] X[1][0] X[1][1] X[1][2] X[1][3] X[1][4] X[2][0] X[2][1] X[2][2] X[2][3] X[2][4]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028

&X[0][0]  X  gives array base-address  2000

 C-Family 202 2D-Arrays

 void main()

 { int a[2][3]={{1,2,3}, {4,5,6},{7,8,9} };

 int (*p)[3]; // pointer ‘p’ to 2d-array with the columns size 3.

 p=a; // p=&a[0][0]; making pointer to 2D array

 for(i=0; i<2; i++)

 { for(j=0; j<3; j++)

 printf(“%d”, p*i+*j+); // p[i][j]  expands to  *(p+i*3+j)

 printf(“\n”);”

 }

 }

Passing 2D array to function
it is just like passing 1D array to function, here array base address is passed and accessed through pointer.

 void main()

 { int a[3][4]={ {1,2,3,4}, {5,6,7,8}, {9,10,11,12} };

 display(a); // display(&a[0][0]);

 }

 void display(int (*p)[4] or int p[][4])

 { int i, j ;

 for(i=0; i<3; i++)

 { for(j=0; j<4; j++)

 printf(“%d ”, p*i+*j+); // p[i][j]  *(p+i*4+j)

 printf(“\n”);”

 }

 }

The second declaration for the parameter p[][4] is also a valid and this type of declaration is allowed only for

the parameters while receiving 2D array. This is also implicitly a pointer of type “int (*p)*4+”.

Passing row by row values of 2D array to a function

 void main()

 { int a[3][4]={ {1,2,3,4}, {5,6,7,8}, {9,10,11,12} };

 for(i=0; i<3; i++)

 display(a[i]); // display (&a[i][0])  passing each row address like 1D array address

 }

 void display(int *p or int p[]) // here ‘p’ pointer to 1D array(row)

 { int i;

 for(i=0; i<4; i++)

 printf(“%d ”, p*i+); // p[i]  *(p+i)

 printf(“\n”);”

 }

output: 1 2 3 4

 5 6 7 8

 9 10 11 12

Here each row address passed as 1D array to the function, for each call of display() function prints one row

on the screen. It is called 3 times for 3 rows.

 C-Family 203 2D-Arrays

Adding two matrices using functions (custom sized input values)

 void main()

 { int x[10][10], y[10][10], z[10][10] , r1, r2, c1, c2, r3, c3;

 scanMatrix(x, &r1, &c1);

 scanMatrix(y, &r2, &c2);

 k=addMatrix(z, &r3, &c3, x, r1, c1, y, r2, c2);

 if(k==0)

 printf(“addition is not possible, size not matched”);

 else

 printMatrix(z, r3, c3);

 }

 void scanMatrix(int p[][10], int *pr, int *pc)

 { int i,j;

 printf(“\n enter the size of matrix :”);

 scanf(“%d%d”, pr, pc);

 for(i=0; i<*pr; i++)

 { for(j=0; j<*pc; j++)

 { printf(“ enter element of *%d+*%d+ :”, i, j);

 scanf(“%d”, &p*i+*j+);

 }

 }

 }

 int addMatrix(int z[][10], int *pr, int *pc, int x[][10], int r1,int c1, int y[][10], int r2, int c2)

 { int i,j;

 if(r1 != r2 || c1 != c2)

 return 0; // addition failed

 // adding two matrices

 for(i=0; i<r1; i++)

 for(j=0; j<c1; j++)

 z[i][j]=x[i][j]+y[i][j];

 *pr=r1; *pc=c1;

 return 1; // addition success

 }

 void printMatrix(int a[][10], int r, int c)

 { int i,j;

 printf(“\n output matrix is \n:”);

 for(i=0; i<r; i++)

 { for(j=0;j<c;j++)

 printf(“ %d ”, a[i][j]);

 printf(“\n”);

 }

 }

 C-Family 204 Characters & Strings

Character Handling
In programming, it is often need to handle single character data items such as employee sex(M|F), marks

grade of a student(A|B|C), pass or fail (P|F), etc. These characters may be an alphabet, digit, or any other

symbol, which is to be handled as a single character item in the program.

In computer’s memory, the characters are stored in terms of their ASCII values but not in its picture form as

visible on the screen. For example, the ASCII value of ‘A’ is 65, ‘B’ is 66. Remember that, these ASCII values

are stored in its binary form as computer understands it. ASCII values are standard serial numbers given to

each alphabet, digit, and all symbols in the keyboard. This standard is called American Standard Code for

Information Interchange proposed by international computer association. Here the word “information

interchange” means, interchanging the data from one device to another device or one computer to another

in terms of ASCII values.

Hence every character internally represented in binary format and when it is to be displayed on the screen,

it converts into symbolic picture form (picture in pixel form). Internally, special software continuously

performs this graphical conversion job while displaying contents on the monitor. The hardware

manufacturers provide this kind of software. The following table shows ASCII codes of some characters set

Character constant: If any single character enclosed within a pair of single quotes is known as char

constant. Unlike integer or float constants, the char constants must be enclosed within a pair of single

quotes.(not double quotes) . Remember, the char constant value is nothing but ASCII value. For example

 * 19 , 34 , 10, -10 , 567 are valid integer constants.

 * 19.78 , 10.00, -10.94, -45.98 are valid float/double constants.

 * ‘A’, ‘B’, ‘a’ , ‘9’, ‘+’ …etc are valid character constants.

 * ‘abc’, ‘123’, ‘+12’, “A”, “5” … are not valid character constants.

Character variable: The characters ASCII values lie in between 1 to 255, so to store such values,

the C-developer Mr. Dennis Ritchie has given a suitable data type called ‘char’. The data type ‘char’ takes

1byte memory, where we can store values of range 0 to 255.

 char variable1, variable2,…variableN; // this is the syntax to declare char variable

 char gender , marksGrade, accountType; // here gender , marksGrade are char type variables

Initialization of char variable:

 char gender=’M’; // male

 char accountType=’S’; // savings account

 char color=’Y’; // yellow

 int gender=’M’; // this is also valid but informal

char gender=’M’ or char gender=77; these both declarations are same, since ‘M’ ascii code is 77, but this

77 is difficult to remember/recognize as ascii code, so symbolic representation is always best. The last

declaration int gender=’M’ is also valid but one byte is enough to store ascii, here 1byte gets unused in

2bytes of int memory.

Characters ASCII values

A to Z 65 to 90

a to z 97 to 122

0 to 9 48 to 57

‘ ‘ (blank space) 32

‘\n’ (enter key) 13

 C-Family 205 Characters & Strings

Character library functions for I/O

 scanf(), getchar(), getch(), getche()

 printf(), putchar(), putch().

We know that, printf() & scanf() are generic i/o functions used to print & scan any type of data. Whereas

other functions like getchar(), getch(), putchar(), putch() are specialized to handle only characters data.

These are light weight functions to handle characters data.

getchar(): This is light-weight alternative to scanf() function, it accepts a single character from keyboard.

 char ch;

 ch=getchar(); // this is equal to scanf(“%c”, &ch);

getch(): the scanf() and getchar() does not support to read all keys like up-arrow, down-arrow, pg-up,

pg-dn, home, end, F1, F2, etc. But the getch() supports to read all keys in the keyboard.

This reads values directly from keyboard buffer not from program’s io buffer.

Buffer can be imagined as stock maintenance go-down building in a factory, first the manufactured items are

kept for a while before shifting to destination. In computer, buffer is a small capacity memory, works as

mediator between device & program, used to store input values for a while before reading by our program.

Whatever you entered in the keyboard, the software of the keyboard inserts into its buffer, later our

program reads such input values from the buffer. Thus buffer works as mediator between device & our

program.

the getch() can accept any key code directly from keyboard buffer like above shown picture. It does not

show input values on the screen. Even it doesn’t wait for enter-key for input confirmation. That is, all other

io functions waits until enter-key pressed by the user. When user presses the enter-key, then io functions

starts scanning input. But getch(), getche() does not wait for enter-key for confirmation.

Note: The getch(), putch(), getche() are non-standard function, so it may not be available in all versions of C.

It works only on DOS based C-Software like Turbo-C.

getche(): it is just as getch(), but it shows the input character on the screen.

putchar(): this is similar to printf() function for showing single character on the screen.

putch():it sends the input character directly to the monitor buffer.

Displaying all ASCII symbols

This program displays ASCII codes of A-Z, a-z, 0-9, etc.

 vodi main()

 { char ch;
 // printing all upper case alphabets

 for(ch=’A’; ch<=’Z’; ch++) // for(ch=65; ch<=90; ch++)

 printf(“\n %c = %d”, ch, ch);

 // printing all lower case alphabets

 for(ch=’a’; ch<=’z’; k++) // for(ch=97; ch<=122; ch++)

 printf(“\n %c = %d”, ch, ch);

 // printing all digits

getchar()
scanf()

our progoram’s
IO buffer

keyboard
IO buffer

 Keyboard

getch()
getche()

 C-Family 206 Characters & Strings

 for(ch=’0’; ch<=’9’; ch++) // for(ch=48; ch<=57; ch++)

 printf(“\n %c = %d”, ch, ch);

 }

In the printf() statement, ‘%c’ is used to print character in picture format, whereas ‘%d’ is used to print its

ASCII code. In the above program, the expression ‘ch++’ is a valid operation; even though the variable ‘ch’ is

‘char-type’. We can do all arithmetic and logical operations on characters just as integers.

Library functions for Character manipulations
isalpha(): This function checks whether the given character is alphabet or not? returns Boolean value.

 If it is alphabet then returns 1, otherwise 0.

isdigit(): checks the given character is digit or not? Returns boolean value

islower(): checks the given character is lower case alphabet or not? Returns boolean value

isupper(): this is opposite above function.

tolower(): this coverts upper case alphabet to lower case and finally returns it.

toupper(): this is opposite above function.

Demo: if(isupper(‘A’)) printf(“\n upper case alphabet”); √

 else printf(“\n lower case alphabet”); x

 if(isupper(‘a’)) printf(“\n upper case alphabet”); x

 else printf(“\n lower case alphabet”); √

 if(isdigit(‘9’)) printf(“\n digit”); √

 else printf(“not a digit”); x

 ch=toupper(‘a’);

 printf(“output is %d “, ch);  ‘A’

 ch=tolower(‘A’);

 printf(“output is %d “, ch);  ‘a’

Printing opposite case of a given character alphabet

This program accepts a single character alphabet from keyboard and prints opposite case.

 input:A⤶ input: a ASCII code of A-Z  65 to 90 , a-z  97 to 122, difference is  32

 output:a ⤶ output:A ‘A’+32  ‘a’ ; ‘B’+32  ‘b’ ; ‘a’-32  ‘A’

 below three programs do same job, but last one is good choice.

void main()
{ char ch;
 printf(“enter a alphabet :”);
 ch=getchar();
 if(ch>=’A’ &&ch<=’Z’)
 ch=ch+32;
 else if(ch>=’a’ &&ch<=’z’)
 ch=ch-32;
 printf(“opposite is: %c”, ch);
}

always we can’t remember the
ascii difference, this code is not
recommended

void main()
{ char ch;
 printf(“enter a alphabet :”);
 ch=getchar();
 if(ch>=65 && ch<=90)
 ch=ch+32;
 else if(ch>=97 &&ch<=122)
 ch=ch-32;
 printf(“opposite is: %c”, ch);
}

Always we can’t remember
asccii codes, this is not
recommended

void main()
{ char ch;
 printf(“enter a alphabet :”);
 ch=getchar();
 if(isupper(ch))
 ch=tolower(ch);
 else
 ch=toupper(ch);
 printf(“opposite is: %c”, ch);
}

This is the best choice to
understand easily.

 C-Family 207 Characters & Strings

Printing ASCII/SCAN code of a given input symbol

Note: This program works only on DOS based compilers like Turbo c/c++

The keys in the keyboard divided into two types, normal keys, and special keys.

The normal keys are alphabets, digits, operators, punctuation symbols, etc.

The special keys are F1,F2, ….F12, up-arrow, down-arrow, pgup, pgdown, home, end, control and alt keys.

The normal keys produces only ascii-codes, whereas special keys produces two values as zero + scan code.

If first input code is non-zero then user entered a normal-key.

If first input code is zero then user entered a special-key, we have to scan again for 2nd code.

 void main()

 { char ch1,ch2;

 printf(“enter any key in the keyboard :”);

 ch1=getch();

 if(ch1 != 0) // user entered normal-key

 prnitf(“\n ascii code is = %d”, ch1);

 else

 { ch2=getch(); reading 2
nd

 code (scan-code)

 printf(“\n ascii code = %d, scan code = %d”, ch1, ch2);

 }

 }

 input: A⤶ input: up-arrow⤶

 output: ascii code = 65 output: ascii code = 0, scan code = 72

Printing following patterns

ABCDEF
ABCDE
ABCD
ABC
AB
A

void main()
{ int i , j;
 for(i=0; i<6; i++)
 { for(j=0; j<6-i; j++)
 printf(“%c”, ‘A’+j);
 printf(“\n”);
 }
}

A
AB
ABC
ABCD
ABCDE
ABCDEF

void main()
{ int i , j;
 for(i=0; i<6; i++)
 { for(j=0; j<=i; j++)
 printf(“%c”, ‘A’+j);
 printf(“\n”);
 }
}

 fflush(stdin) usage

 void main()

 { char ch1,ch2;

 printf(“enter character1:”);

 ch1=getchar(); or scanf(“%c”, &ch1);

 printf(“enter character2:”);

 ch2=getchar(); or scanf(“%c”, &ch2);

 }

if input is:

enter character1: A ⤶ (A + enter-key), here first character ‘A’ is scanned by ch1=getchar(); and enter-key

scanned by ch2=getchar(); because, the enter-key is also a character. So does not give a change to read 2nd

input character from KB. If we use fflush(stdin) before reading 2nd character then it clears keyboard buffer

 C-Family 208 Characters & Strings

so that it allows to read a fresh new character. Let us see following program.

fflush() clears the keyboard buffer if any previous input character left like enter-key or space or F6.

stdin  keyboard buffer , stdout  monitor buffer, stdprn  printer buffer.

 void main()

 { char ch1,ch2;

 printf(“enter character1:”);

 ch1=getchar(); or scanf(“%c”, &ch1);

 printf(“enter character2:”);

 ffush(stdin); // clearing previous input values if any characters left like enter-key, space, etc.

 ch2=getchar(); or scanf(“%c”, &ch2);

 }

enter character1: A ⤶

enter character2: B ⤶

 C-Family 209 Strings

 Strings
String is a collection of characters arranged sequentially one after the other in the memory, strings also said

to be array of characters, used to represent names of persons, items, countries, cities and sometimes to

represent messages. Generally, any non-computable data manipulates as strings. That is, on strings data, we

don’t do any arithmetical operation such as addition, subtraction, multiplication, division. To handle strings,

there is no direct data type in C, instead we have to access them as normal array of characters. However, C

provides some basic facilities to handle strings easily, such as representation of string constants,

initialization of string, automatic address generation of string constants and also provided several standard

library functions to manipulate the strings.

Example strings are “India”, “China”, “C-Family”, “123”, “A123”, etc.

The strings are stored like array of characters in the form of ascii values, and these ascii values are again in

the form binary values as computer understands it, for example, the string “INDIA” in the memory as

The string “INDIA” occupies 6 bytes in the memory (5bytes for INDIA + 1byte for null-character (‘\0’))

The value ‘\0’ is taken as null-char and its ascii value is Zero, used to represent as ‘end-of-string-marker’.

The compiler automatically appends null character at the end of string constants.

What is string constant?
Like integer float char constants, we can represent string constants too. It is the set of zero or more

characters enclosed within a pair of double quotes is known as string constant.

Example for string constants: “India”, “C-family”, “A”, “”, “9440-030405”, “A123”, “1234”, etc.

Do not confuse 1234 with “1234”, the value 1234 is said to be integer constant, whereas “1234” is said to be

string constant (with quotes). The integer constant 1234 is stored in two-byte(int) of memory in its binary

format as: 00000100-11010010, whereas the string constant “1234” is stored in ascii form of every digit like

shown below.

The null character and its importance
As we know, strings length differ from one to another, so there should be an indication to identify the end of

string. For this reason, the null character (‘\0’) is inserted at the end of every string. Almost all C library

functions are designed by considering this null character as a string terminator. String library functions

automatically adds this null-character at the end of string, for example scanf(),gets(), strcpy(), strcat(), etc.

Sometimes programmers need to be inserted explicitly null-char while handling char by char in the string.

Some programmers use zero in place of null character, because, the null character value is zero.(‘\0’0)

Note: The ascii values of all chars lie in b/w 1-255, so this exceptional value 0 took as null-character-value as

a string terminator. But in programs, it is better to write ‘\0’ instead of 0(zero) to represent in symbolic way.

Note: Strings are nothing but character arrays, therefore, whatever operations applicable on arrays, they

can also applicable on strings. For example, printing, scanning, passing string to function, accessing string

through pointer, etc.

“India” in ASCII codes ‘I’ ‘N’ ‘D’ ‘I’ ‘A’ ‘\0’ 73 78 68 73 65 0

“India” in Binary codes 01001001 01001110 0100100 01001001 0100001 0

‘1’ ‘2’ ‘3’ ‘4’ ‘\0’ 49 50 51 52 0 110001 110010 110011 110100 0

 C-Family 210 Strings

String as variable
we know that, variable is a name of space, used to store and access a value with variable name. Similarly, to

store and access characters of a string, one is required “char []” array.

For example: char arr[20]; // It can hold a string with the maximum length 19 chars and 1 byte for null.

Initialization of strings: like normal arrays, we can initialize character arrays with the strings in

different ways. This is as given below example.

 char a*9+=”C-Family”; // here null character automatically appends at end by the compiler

 char a*+=”C-Family”; // the size of array calculates by the compiler, which is equal to length of “c-family”+1

 char a[9+=, ‘C’, ’-‘, ’F’, ’a’, ’m’, ’i’, ’l’, ’y’, ‘\0’-; // we can initialize with char by char

 char a*+=, ‘C’, ’-‘, ’F’, ’a’, ’m’, ’i’, ’l’, ’y’, ‘\0’-; // size not given, automatically calculated by compiler, it is 9

 char a[]={67,45,70,97,109,105,108,121,0}; // we can also initialize with ASCCII values of “c-family”

The last declaration with ASCII values is somewhat confusion and not suggestible, it is just given for fun.

The First two declarations are more convenient & easy to understand.

 char a[3+=”C-Family”; // compiler raises an error, because, the array size is not enough for the string

 char a*20+=”hello”; // remaining 14 locations gets unused(empty)

Accessing individual characters in a string is same as accessing elements in the array. The index of the

character should be specified as array subscript.

 For example: char a[10]=”C-Family”;

The expression ‘a*0+’ accesses the first character ‘c’,

 ‘a*1+’ accesses the second character ‘-’

 ‘a*2+’ accesses the second character ‘F’, …

 in this way, we can access any element in the array

Console i/o functions on Strings
 Input functions: scanf() , gets()

 Output functions: printf() , puts()

gets() and puts() were provided simple syntax and specialized for strings data. The scanf() and printf() are

generic i/o functions, they support for all types such as int, float, long, string. Here format string %s is used

to read/write the string data.

① scanf(“%s”, array-address) : this reads a string char by char from keyboard until a new-line or a blank-

 space is found, whichever comes earlier. If input is “ jack and jill⤶ ”, then scanf() accepts only “jack”.

② scanf(“%*^\n+”, array-address) : this reads a string char by char until new-line is found, that is, it accepts

 total string including spaces. If input is “jack and jill⤶ ”, this scanf() accepts total string “jack and jill”.

 The gets() and this scanf(“%*^\n+”, ..) works in similar way.

 These input functions automatically append null character at the end of string. For example

Scanning string with “scanf()” Scanning string with “gets()”

 char a[20];
 printf(“enter a string :”);
 scanf(“%s”, a); //scanf(“%s”, &a*0+);

 printf(“output = %s”, a);

 char a[20];
 printf(“enter a string :”);
 gets(a); or scanf(“%*^\n+”, a);
 printf(“output = %s”, a);

Input: Jack and Jill⤶ //this scanf() treats as 3 strings

Output: Jack
Input: Jack and Jill⤶ // gets(), scanf() treats as one string

Output: Jack and Jill

The puts() and printf() works in similar way, both prints the string char by char until null character.

 C-Family 211 Strings

Demo program for accepting a string and printing on the screen

 ip: Srihari is my name⤶

 op: the string you entered is : Srihari is my name

 void main()

 { char a[100];

 printf("enter string :");

 scanf("%[^\n]", a); // a  &a[0]

 printf("\n the string you entered is : %s", a);

 }

the scanf() takes array base-address as argument and fills the scanned string into this array, at the end of

string, scanf() automatically inserts null-char(not by compiler). Whereas printf() displays char-by-char until

null-char is found.

Accepting a string char-by-char and printing char-by-char on the screen.

Note: this is same as above program, but scanning char-by-char until ‘\n’ is found, later printing it.

 ip: Srihari is my name⤶

 op: Srihari is my name

 void main()

 { char a[100] , ch; int i=0;

 printf("enter string :");

 while(1)

 { scanf(“%c”, &ch); or ch=getchar(); // scanning char-by-char

 if(ch=='\n') break; // if enter-key found then stop scanning

 a[i++]=ch; // inserting scanned char into array

 }

 a[i]='\0'; // inserting null-char at end of string. It is our responsibility

 printf(“\n output string is :”);

 for(i=0; a[i]!='\0'; i++)

 printf(“%c”, a[i]); or putchar(a[i]);

 }

Counting number of lower & upper case alphabets in a string.

This program accepts a string and counts the number of lower & upper case alphabets, numeric digits,

spaces and other characters.

 void main()

 { char a[100]; int i, lower, upper, digit, space, other;

 printf(“\n enter a string :”); gets(a);

 lower=upper=digit=other=0;

 for(i=0; a*i+!=’\0’; i++)

 { ch=a[i];

 if(ch>=’A’ &&ch<=’Z’) upper++; // if(isupper(ch)) upper++;

 else if(ch>=’a’ && ch<=’z’) lower++; // if(islower(ch)) lower++;

 else if(ch>=’0’ && ch<=’9’) digit++; // if(isdigit(ch)) digit++;

 else other++;

 }

 printf(“\n count of upper=%d , lower=%d , digits=%d , other=%d”, upper , lower, digit , other);

 }

 C-Family 212 Strings

Converting upper case alphabets to lower case and vice-versa in a string

This demo program accepts a string and converts lower case alphabets to upper case and vice-versa.

 Input: This Chair Has 4 Legs

Output: tHIS cHAIR hAS 4 lEGS

We know that, uppercase ASCII ranges 65 to 90 and lowercase ranges 97 to 122. The difference between

these two cases is 32. Therefore, by adding or subtracting 32, we can get corresponding opposite case.

void main()

{ char a[100]; int i;

 printf(“\n enter string :”); gets(a);

 for(i=0; a*i+!=’\0’; i++)

 { if(a*i+ >= ’a’ && a*i+ <= ’z’) // if(islower(a[i]) a[i]=toupper(a[i]) ;

 a[i]=a[i]-32;

 else if(a*i+ >= ’A’ && a*i+ <= ’Z’) // if(isupper(a[i]) a[i]=tolower(a[i]) ;

 a[i]=a[i]+32;

 }

 printf(“ output string is %s:”, a);

}

Counting vowels in a given string

void main()

{ char a[100], ch; int i, count=0;

 printf(“\n enter string :”); gets(a);

 for(i=0; a*i+!=’\0’; i++)

 { ch=toupper(a[i]);

 if(ch==’A’ || ch==’E’ || ch==’I’ || ch==’O’ || ch==’U’)

 count++;

 }

 printf(“no of vowels is %d”, count);

}

ch=toupper(a[i]): this function converts into upper-case, so that we can compare in only one case of upper.

(instead comparing like ch==’a’ || ch==’A’ || ch==’e’ || ch==’E’||….)

Printing ASCII values of a given person name

This demo program accepts a name of a person and prints ASCII value of each character.

 Input: enter name of a person: Sri Hari

 Output: S=83, r=144, i=105, ‘ ‘=32, H=72, a=97, r=144, i=105

 void main()

 { char a[100], i, n;

 printf(“\n enter name of a person :”);

 gets(a); // gets(&a[0]);

 printf(“\n the list of ascii values are ”);

 for(i=0; a*i+!=’\0’; i++) // loop to print all character’s ASCII values

 printf(“%c = %d , ”, a*i+, a*i+);

 }

The i/o function gets() accepts “Sri Hari” char by char from keyboard and stores into given array in &a[0],

&a*1+, &a*2+,etc. The “%c” prints the character in symbolic form, whereas %d prints its ASCII code.

Here the for-loop repeats until null character is found.

 C-Family 213 Strings

Finding Length of string

 input: INDIA input: All fruits are not apples

 output: length=5. output: length=25

 void main()

 { char a[100], count=0;

 printf(“\n enter any string :”);

 gets(a);

 for(i=0; a*i+!=’\0’; i++) // counting all characters until null is found

 count++;

 printf(“\n length = %d”, count);

 }

Here the loop repeats until the null character is reached and same time the characters are counted using

‘count’ variable to find length. Generally, we don’t consider null character as a part of length.

Finding sum of digits in a given string

This program accepts a string from keyboard; the string can have digits in the input, finding sum of such

digits. For example, the string is “ABC567DEF9PQ12”,

output is: 5+6+7+9+1+2 30

 void main()

 { char a[100], i , sum=0;

 printf(“enter a string :”);

 scanf(“%s”, &a*0+);

 for(i=0; a*i+!=’\0’; i++)

 { if(a[i]>= ’0’ && a*i+ <= ‘9’)

 { sum=sum+(a[i]-48); // sum=sum+(a[i]-‘0’);

 }

 }

 printf(“\n sum = %d”, sum);

 }

The ASCII value of ‘0’ is 48, ‘1’ is 49, ‘2’ is 50, etc; so 48 subtracted to convert ascii value to numeric value

Printing string in reverse form

 ip: Apple

 op: elppA

logic: first it moves the loop variable ‘i’ to end of string, later prints char by char from last to first in a string.

void main()

{ char a[20], i;

 printf(“\n enter any string :”);

 gets(a);

 for(i=0; a*i+!=’\0’; i++) // loop stops when null is found.
 { // this is empty loop, the loop stops when ‘i’ reaches to null character.

 // after loop, ‘i’ value attains length of string.

 }

 for(i--; i>=0; i--) // printing string in reverse order (char by char in reverse order)

 printf(“%c”, a*i+);

 }

‘A’ ‘p’ ‘p’ ‘l’ ‘e’ ‘\0’

i

 C-Family 214 Strings

Calculating number of words in a given multiword string

This program accepts a multi-word string and finds number of words, assume there may be more than one

space between two words but not with other symbols like dot, coma, etc.

 void main()

 { char a[100]; int i, count=1;

 printf(“\n enter a multi word string :”);

 gets(a);

 for(i=0; a*i+!=’\0’; i++)

 , if(a*i+==’ ‘) // if space is found then count as one word

 { count++;

 while(a*i+1+==’ ‘) // if next char is also space, then skip by incrementing loop.

 i++;

 }

 }

 printf(“\n number of words = %d”, count);

 }

Let us observe the input string, contained more than one space between words. The inner while loop used

to skip extra spaces between words. When the index pointer ‘i’ moves to first space then ‘count’ increments

and all succeeding spaces if any are skipped by the inner while loop.

Converting each word first letter to upper case and remaining to lower case.

 ip: all apples are good, some are in white color and some are in red color.

op: All Apples Are Good, Some Are In White Color And Some Are In Red Color.

(Let us assume, the words in a string are separated by single white space)

 void main()

 { char a[100]; int i ;

 printf(“enter string :”);

 gets(a);

 a[0]=toupper(a[0]); // converting first character to upper case.

 for(i=1; a*i+!=’\0’; i++)

 { if(a[i-1+==’ ‘) // if previous char is space then word started

 a[i]=toupper(a[i]);

 else a[i]=tolower(a[i]); // if a[i] is not first letter of word then convert to lower

 }

 printf(“output string is %s ”, a);

 }

input: A L L A P P L E S A R E R E D \0

 C-Family 215 Strings

Accepting a text (multi line string) and printing on the screen.

This demo program accepts a multi-line string (text) in char by char from keyboard and prints on the screen.

Here char by char scanned until user pressed F6 as end of input. Because gets() or scanf() does not support

to scan more than one line. Here every scanned char stored into an array and later printed on the screen.

 void main()

 { char a[1000], ch; int i=0;

 printf(“enter text at end of input, type F6 key :”); // here F6 is functional single key, not F and 6

 while(1)

 { ch=getchar(); // getchar() also accepts new line (enter key)

 if(ch==-1) break; // the getchar() produces -1 , if input is F6 key.

 a[i++]=ch; // storing into array

 }

 a*i+=’\0’; // inserting null character at end of text
 printf(“\n output = %s”, a); // printing text
 }

How string constants are stored in the memory
At compile time, the program’s code and data split into two separate entities and stored separately in

executable file. This file loads as it is into memory before executing it. This is as

The data area is again divided into two parts, heap area & stack area. In heap area, a permanent data items

like string constants, global and static variables are managed. Whereas, in stack area, the temporary local

variables and function return addresses are manipulated. (Refer the chapter storage-classes)

All string constants in a program are moved to data-area, whereas in the code-area their starting addresses

are substituted (pasted). In this way strings are mapped with their address in the program, let us see

following example

Code
Area

this code area contains
instructions of program

Data
Area

Heap
Area

String constants

Global variables

Static variables

Stack
Area

Auto variables

Function return address

Suppose input: All apples are good,

 all good are not apples,

 some are so sweet

 F6

 Output: All apples are good,

 all good are not apples,

 some are so sweet

 C-Family 216 Strings

Pointer to string

As we know, string can be in the form of variable or constant. In both cases, the strings are handled in

similar way. For example

 char a[20+=”Hello”;

 char *p=”World”;

As per first declaration, we can say that, the string is in the form of variable. In later part of the program, we

can replace this string “Hello” by some other string, but new string length must be <20 chars (array-size).

As per second declaration, we can say that, the string is in the form of constant. The space allocation for

string “World” is exactly length+1(6 bytes), here first character address (&W) assigns to the pointer ‘p’.

Now using pointer ‘p’, we can read the string char by char. In later part of the program, we can replace this

string “World” by some other string, but the new string length must be the same or less of this “World”.

If new string length is more, then it crosses memory limits and causes the program crash. This Pointer

initialization widely used for string constants where no changes required in the future like company-names,

country-names, person-names, codes, labels…etc.

Pointer to a string is just like a pointer to an array, either the string may be a variable or constant. In both

cases, the characters are accessed in similar way. Observe the above picture. If pointer ‘p’ is pointing to first

char in a string, the expression ‘*p’ accesses the first char, *(p+1) accesses the second char, etc. As we know,

the expressions *p, *(p+1), *(p+2)... can be written in array fashion as p[0], p[1], p[2],etc. For example

 void main()

 { char a[+=”World”, *p;

 p=a; // p=&a[0];

 for(i=0; p*i+!=’\0’; i++)

 printf(“%c”, *(p+i) or p[i]);

Observe, how the string constant’s address
substitutes in the program
void main()
{ char *p;

 p=“hello”;

 if(p==”world”)

 else

 }

Code Area of program
void main()
{ char *p;

 p=2000;

 if(p==4000)

 else

}

Data area of program

“Hello” “World”

2000 4000

 a a[0] a[1] a[2] a[3] a[4] a[5] …

2000 ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’ --

4000 2000 2001 2002 2003 2004 2005 2006

 P

P[0]

P[1]

 P[2]

 P[3]

 P[4]

 P[5]

 3000 ‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

5000 3000 3001 3002 3003 3004 3005

 C-Family 217 Strings

 for(i=0; *p=’\0’; i++)

 printf(“%c”, *p++); // this *p++ is nothing but *p and p++

 } // this is equal to: printf(“%c”, *p); p++;

 }

Above two loops print same output. In first loop, the ‘p’ will not be moved/incremented, but in second loop,

the pointer ‘p’ advances to next char every time. After loop, the ‘p’ moves to null char of string. This is

shown below picture

Passing string to a function
Already we know that, how to pass an array to a function. Similarly, we can pass a string as an argument to a

function. Passing string to function is same as passing array to function. Here address of string is passed as

an argument and the receiving parameter must be “char*” type pointer.

This program demonstrates how to pass a string to the function

 void main()

 { char a*20+= “Hello World”;

 display(a); // display(&a[0]);

 display(a+6); // display(&a[6]);

 display(“C-Family"); // display(&C);

 display("C-Family”+2); // display(&F);

 }

 void display(char *p or char p[]) // both declarations are same (use only one)

 { int i;

 for(i=0; p[i] !='\0'; i++)

 printf (%c", p[i]); // printing char by char or use printf(“%s” , p);

 }

 output: Hello World

 World

 C-Family

 Family

The pointer parameter ‘p’ points to the string(s) in every call as given below

P

&a[0] ‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

4000 2000 2001 2002 2003 2004 2005

after P++

2001 ‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

4000 2000 2001 2002 2003 2004 2005

&a[0] ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

P a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8]

&a[0] ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

P a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8]

&C ‘C’ ‘-’ ‘F’ ‘a’ ‘m’ ‘i’ ‘l’ ‘y’ ‘\0’

P

&F ‘C’ ‘-’ ‘F’ ‘a’ ‘m’ ‘i’ ‘l’ ‘y’ ‘\0’

P

 C-Family 218 Strings

As we know, the parameter declaration “char *p” in pointer style is informal and sometimes confusion.

Most of the programmers prefer array-like-pointer declaration as “char p*+”. This is formal and it tells that ‘p’

is receiving string address rather than single char address. This parameter declaration “char p*+” seems to be

an empty-array, many people think like that, but implicitly it is a “char *p” pointer. This declaration

provided for easy understanding and nothing more

While manipulating strings, we often need to perform some common operations like copying a string,

comparing, reversing, finding sub-string, converting text format to numeric, etc. As these operations are

common in programming and we prefer to abstract (hide) these tasks by writing separate functions for

each operation. The string library functions named strlen(), strcpy(), strcmp(), strrev(),etc are already exist

to cooperate the programmer instead of writing from low level. The following programs show, how string

library functions are developed and used. Here some sample user-defined functions are implemented to

know how library function works internally.

Finding length of string using function

This function takes string as an argument and returns the length of it

 int myStrlen(char *p)

 { int i;

 for(i=0; p*i+!=’\0’; i++)

 { // empty loop, indirectly calculates the length to ‘i’

 }

 return(i); // after loop, the value of ‘i’ contains length, so returning ‘i’ as length

 }

 void main()

 { char a*100+=”hello world”; int k;

 k=myStrlen(a); // myStrlen(&a[0]);

 printf(“\n length1 = %d”, k);

 k=myStrlen(“Computer”); // myStrlen(&C);

 printf(“\n length2 = %d”, k);

 }

 Output: length1=11

 length2=8

Copying a string from one to another array

In programming, it is often need to copy a string from one to another location. For this, if one tries to copy a

string using assignment operator then compiler shows an error.

For example: char x*20+=”Hello World”;

 char y[20];

 y=x; // y=&x[0];

He we expect that, the string “Hello World” copies from x*+ to y*+, but compiler gives an error, because

unknowingly we are trying to assign the address of ‘&x[0]’ to ‘y’ (here ‘y’ is not a pointer, so it is an error).

The solution is, copying char-by-char from source to destination array.

 y[0]=x[0]

 y[1]=x[1]

 y*2+=x*2+ …Using loop. Let us see, how following function copies it.

 C-Family 219 Strings

 void myStrcpy(char y[] , char x[]) // y=x;

 { int i;

 for(i=0; x*i+!=’\0’; i++)

 y[i]=x[i];

 y*i+=’\0’; // inserting null at end of string.

 }

Main() fn to check the above function

 void main()

 { char x*20+=”hello world”, y[20];

 myStrcpy (y , x); // y=x

 printf(“\n After copying1, the string is = %s”, y);

 myStrcpy(y, “Apple”); // y=”Apple”

 printf(“\n After copying2, the string is = %s”, y);

 }

 Output: After copying1, the string is = Hello World

 After copying2, the string is = Apple

// the above function can be written in pointer notation as

 void myStrcpy(char *y , char *x)

 { while(*y++ = *x++);

 }

here the value *x assigns to *y, later checks the *y value, if it is null then loop terminates, otherwise,

y++ & x++ get incremented and loop continues till null is found.

some Valid and invalid assignments on strings

// valid assignments

char a[4];
a*0+=’A’;
a*1+=’B’;
a*2+=’C’;
a*3+=’\0’;

// valid assignments

char a[4];
char *p=&a[0]
p*0+=’A’;
p*1+=’B’;
p*2+=’C’;
p*3+=’\0’;
Here ‘p’ is pointing to
array a[]

// invalid assignments

char *p;
p*0+=’A’;
p*1+=’B’;
p*2+=’C’;
p*3+=’\0’;
because, the ‘p’ is not
pointing any memory

// valid assignments

char *p;
p=malloc(4);
p*0+=’A’;
p*1+=’B’;
p*2+=’C’;
p*3+=’\0’;
because, ‘p’ is pointing
to dynamic memory

char a[4];
myStrcpy(a,”ABC”);

this task is just like
above assignments,
it is valid.

char a[4];
char *p=&a[0];
myStrcpy(p,”ABC”);

this task is just like
above assignments,
it is valid.

char *p;
myStrcpy(p , ”ABC”);

this task is just like above
assignments, invalid.

char *p;
p=malloc(4);
myStrcpy(p , ”ABC”);

this is just like above
task. It is valid

 C-Family 220 Strings

Comparison of two strings

 void main()

 { char x*20+=”Hello”, y*20+=”Hello”;

 if(x==y) printf(“equal”); // if(&x[0] == &y[0])

 else printf(“not equal”);

 if(“Hello”==“Hello”) printf(“equal”);

 else printf(“not equal”);

 }

Output: not equal

 not equal

Even though two array contents are same, the output will be ‘not equal’, because, unknowingly, we are

trying to compare base address of two arrays, if(x==y) is nothing but if(&x[0] == &y[0]). As we know, two

arrays will not be located in the same location of RAM. So always not equal.

In second if-statement also, the base address of two strings if(&H== &H) are compared and we get again

“not equal”. Because two string constants will not be located in the same location.

The solution is, compare char by char using loop, which is as given below

 void myStrcmp(char x[], char y[])

 { for(int i=0; x*i+ != ’\0’; i++)

 { if(x[i] != y[i])

 break;

 }

 return x[i]-y[i]; // returning ascii difference

 }

If both strings are equal then returns 0, otherwise returns first un-matched char’s ASCII difference of two

strings. It return +ve, if string1>string2 in dictionary order(Alphabetical order) or else –ve.

For example, if two strings are:

 “Hello” and “Hello” then returns (0);

 “World” and “Words” then returns (‘l’-‘d’); // ascii difference is +ve , here World>Words

 “Words” and “World” then returns (‘d’-‘l’); // ascii difference is –ve , here Words<World

The main() function to check the above function is

 void main()

 { char x[50], y[50]; int k;

 printf(“\n enter string 1 and string 2:”);

 gets(x); gets(y);

 k=myStrcmp(x,y);

 if(k==0) printf(“string1 == string2”);

 else if(k<0) printf(“string1<string2”);

 else printf(“string1 > string2”);

 }

The above function myStrcmp() can be written in pointer notation as

 int myStrcmp(char *x , char *y)

 { while(*x && *x==*y)

 { x++; y++;

 }

 return *x - *y;

 }

 C-Family 221 Strings

Concatenation of two strings

Sometimes, it is required to attach one string at the end of another string and this operation is often called

string concatenation.

Let x*+=”hello”, y*+=”world”  after x=x+y  the x[] would be “helloworld”

 void myStrcat(char x[], char y[])

 { int i , j;

 for(i=0; x*i+!=’\0’; i++)

 { // empty loop, repeats until null character is found

 }

 for(j=0; y*j+!=’\0’; j++) // attaching second string at end of first string

 x[i+j] = y[j];

 x[i+j +=’\0’; // inserting null character at end of first string

 }

 void main()

 { char a*20+=”Hello”, b*20+=”World”;

 myStrcat(a,b);

 printf(“\n after concatenation, the string1= %s”, a);

 myStrcat(a, “ is Wonder”);

 printf(“\n after concatenation, the string2= %s”, a);

 }

output: after concatenation, the string1= HelloWorld

 after concatenation, the string2= HelloWorld is Wonder

above function using pointer

void myStrcat(char *x, char *y)

{ while(*x) x++; // moving ‘x’ pointer to end of first string

 while(*x++ = *y++); // this loop copies all characters to ‘y’ including null

}

Here first, the expression ‘*x’ evaluates, if it is null-char (0) then loop stops, otherwise, x++ is incremented to

point to next character in the string. In this way, *x is checked and x++ incremented until null-char is found.

The second loop copies y[] to x[] which is already discussed above.

Reversing a string

 void myStrrev(char *a)

 { int i;

 for(i=0; a*i+!=’\0’; i++)

 { // empty loop to calculate length, loop ends when ‘i’ reached to null char, finally ‘i’ contains length

 }

 for(j=i-1, i=0; i<j; i++, j--) // ‘i’ points to first element, ‘j’ points to last element in the string.

 { t=a[i]; // swapping

 a[i]=a[j];

 a[j]=t;

 }

 }

i j

‘A’ ‘B’ ‘C’ ‘D’ ‘E’ ‘F’ ‘G’ ‘H’ ‘I’ ‘J’

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

 C-Family 222 Strings

 void main()

 { char a[100];

 myStrrev(a);

 printf(“\n string after reversing %s”, a);

 }

 ip: ABCDEFGHIJ

 op: JIHGFEDCBA

String library functions
In previous examples, we have seen how to write & use string functions. Our C standard library contains a

wide range of well-developed string functions, which help us in minimizing the coding time and building

compact & reliable code without rewriting same code again and again. This library simplifies the logic of

complex programs without feeling any difficulty while handling strings. These function’s prototypes available

in “string.h” header file. So we can simply include and use the functions in our programs.

strlen()
This function takes string address as an argument and returns its length. It counts & returns the

number of characters in a given string without counting null character.

 syntax is: intVariable=strlen(string);

proto-type is: int strlen(char *);

 void main()

 { char a*30+=”Hello World”;

 k=strlen(a);

 printf(“\n string1 length = %d”, k);

 k=strlen(“This is C-Family”);

 printf(“\n string2 length = %d”, k);

 }

 Output: string1 length=11

 string2 length=16

strcpy()
it copies a string from one location to another location and also appends null at end of string.

 void main()

 { char a*30+=”Hello World”;

 char b[30];

 strcpy(b, a); // copies char by char including null.

 printf(“\n after copying, the string1 is : %s”, b);

 strcpy(b, “India”);

 printf(“\n after copying, the string2 is : %s”, b);

 }

Output: After copying, the string1 is : Hello World

 After copying, the string2 is : India

 C-Family 223 Strings

strcat()
here ‘cat’ means concatenation, it attaches one string at the end of another string. That is, it concatenates

two strings like addition.

 syntax: strcat(string1, string2); // string1=string1+string2;

proto-type: char* strcat(char*, char*);

 void main()

 { char a*20+=”Hello” , b*20+=”World”;

 strcat(a,b);

 printf(“output1 = %s”, a);

 strcat(a,”India”);

 printf(“output2 = %s”, a);

 }

Output: output1=HelloWorld

 output2=HelloWorldIndia

strrev()
it reverses the given string

 syntax: strrev(string);

 proto type: char* strrev(char*);

 void main()

 { char a*20+=”Hello”

 strrev(a);

 printf(“output1 = %s”, a);

 strrev(a);

 printf(“output2 = %s”, a);

 }

output1: olleH

output2: Hello

strcmp()
compares two string whether they are equal or not? If both strings are equal then returns (0), otherwise

returns “first un-matched characters ASCII difference in +ve or –ve”.

If returned +ve value, then string1>string2 in dictionary order (alphabetical order), or else string1<string2.

 void main()

 { char a*30+=”Hello World”;

 char b*30+=”Hello World”;

K=strcmp(a,b); // copies char by char including null.

if(k==0) printf(“string1==string2”);

else if(k<0) printf(“string1 < string2”);

else printf(“string1 > string2”);

k=strcmp(“xyz”, “abcdef”);

if(k==0) printf(“string1==string2”);

else if(k<0) printf(“string1 < string2”);

else printf(“string1 > string2”);

 }

 op: string1==string2

 string1 > string2

 C-Family 224 Strings

strcmpi() or stricmp()
It compares two strings, which is same as strcmp(), but it ignores the upper/lower case of alphabets.

Syntax: int strcmpi(string1, string2);

 void main()

 { if(strcmpi(“DELHI", "delhi")==0)

 printf("Both are equal");

 else printf("Not equal");

 }

Outputs: Both are equal

strncmpi() or strnicmp()
It compares two strings up to some specified number of characters, and also ignores the case difference.

Syntax: int strncmpi(string1, string2, no-of-chars-to-compare);

 void main()

 { if(strncmpi(“Garden", "gardening",3) == 0)

 printf("Both are equal");

 else printf(“Not equal");

 }

Output: Both are equal

strupr()
It converts all lower case alphabets into upper case in a given string.

Syntax: strupr(string);

 void main()

 { char a[]="Pens and Pads";

 strupr(a);

 printf("%s", a);

 }

Output: PENS AND PADS

strlwr()
It converts all upper case alphabets into lower case in a given string.

Syntax: strlwr(string);

 void main()

 { char a[]="Jack n JILL";

 strtwr(a);

 printf("%s", a);

 }

Output: jack n jill

strchr()
It searches for a given character in a string, it searches one by one from first position towards end of string.

It returns first occurrence of a specified character address if it is found. Otherwise it returns NULL value.

Syntax: char* strchr(string, char to search);

 void main()

 { char *p;

 p=strchr("Hello world", ‘w’); // returns “&w” in “hello world” string.

 printf("%s", p);

 }

 C-Family 225 Strings

This printf() will prints the message "world" , because ‘p’ pointing rest of the string “world”

strstr()

it searches for a sub-string in a main-string. It returns the first occurrence of sub-string address if it is found.

Otherwise, it returns NULL, if not found.
 void main()

 { char *p;

 p=strchr("I like you very much", “you”);

 printf("%s", p);

 }

This printf() will print the message "you very much"

atoi()
It converts a string-value to integer-value.

Syntax: int atoi(string);

Example: int k;

 k= atoi("123")+atoi("234");

 printf(" output = %d", k);

 output will be: 357

atol()
Converts string-value to long-int value

Syntax: long int atol(string);

Example: long int k;

 k= atol("486384")-atol("112233");

 printf(“output = %ld”, k);

 output will be = 374151

atof()
Converts floating point text format value to double value.

Example: float f;

 f=atof("3.1412")*5*5;

 printf(“%f “, f);

 output will be: 78.530000

itoa(),itoa(),ultoa()
These functions converts a given number (int/long int/unsigned long int)equivalent to string format based

on the given numbering system radix value.

These functions take three arguments, the numeric value, target string address in which the value to be

stored and radix value. Finally returns the target string address, so that function-call can be used as

argument/expression.

syntax: char* itoa(int value, char *targetStringAddress, int radix);

example: char temp[50]; // to store output string

 itoa(45, temp, 2); // converting 45 to binary system value

&a[6] ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

P a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

&a[6] ‘I’ ‘ ’ ‘l’ ‘i’ ‘k’ ‘e’ ‘ ’ ‘y’ ‘o’ ‘u’ ‘ ’ ‘v’ ‘e’ ‘r’ ‘y’…

P a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12]

 C-Family 226 Strings

 printf("output : %s", temp);

 output : 101101

 itoa(45, temp, 8); // converting 45 to octal system

 printf("output : %s", temp);

 output :37

sprintf()
It is like printf() function but with a little difference. The printf() puts the output data on the screen, whereas

sprintf() puts the output data in a given char-array.

Syntax: sprintf(array, format-string, arguments);

Example: char a[100];

 sprintf(a, "Idno=%d , name = %s , salary = %f”, 101, "Srihari", 50000.00);

Observe the following output, how it copies formatted-string to array a[]

 printf(“%s”, a);  Idno=101, name=Srihari, salary=500000.00

sscanf()
It is also like normal scanf() function. But scans formatted-string from given array instead of keyboard.

Syntax: sscanf(array, format-string, &variable1 [, &variable2,..]);

Example: char a[] = "101 Srihari 50000";

 sscanf(a, "%d %s %f “, &idno, &name, &salary);

 printf(“ %d %s %f”, idno, name, salary);  101 Srihari 50000

List of N Strings (Strings in 2D array)
(Before coming to this topic, you better to revise a topic: pointer to 2D array)

This chapter mainly concentrated on how to represent array of strings and operations such as inputting,

printing, sorting, searching, and finding sub-strings, etc.

To store a group of strings, we need a data structure like 2-dimensional array with N*M size, where N is

number of strings and M is maximum size of string length.

For example: char a[20][30];

in this array, we can store 20 strings each with a maximum length of 29 characters (1 for null).

Accessing of these strings is same as accessing of 2D arrays.

Initializing N strings
char a[10][20]={ “APPLE”, “ORANGE”, “BANANA”, “ GUAVA”,…etc};

We can imagine, how the strings are stored in 2D array

‘A’ ‘P’ ‘P’ ‘L’ ‘E’ ‘\0’

‘O’ ‘R’ ‘A’ ‘N’ ‘G’ ‘E’ ‘\0’

‘B’ ‘A’ ‘N’ ‘A’ ‘N’ ‘A’ ‘\0’

‘G’ ‘U’ ‘A’ ‘V’ ‘A’ ‘\0’

 C-Family 227 Strings

How to accept & print a list of strings?
Scanning a group of strings is just like scanning ‘N’ individual strings. The way is, scanning string after string

from keyboard using loop statement. If we use 2-dimensional array then we have to pass each row base

address of array to the scanf() function. The following program shows how to scan and print.

 void main()

 { char a[20][30];

 printf(“Enter number of strings :");

 scanf("%d" &n);

 for(i=0; i<n; i++)

 , printf(“Enter string %d :", i+1);

 flushall();

 gets(a[i]); // gets(&a[i][0]);  passing each row base address to the gets() function

 }

 for(i=0; i<n; i++)

 puts(a[i]); // puts(&a[i][0]);  passing each row address to puts() function

 }

We know, the 2-dimensional array expressions a[i][j] converts into *(a+i*column-size+j);

Whereas, the expression a[i] converts into (a+i*column-size), which gives ith row address.

(refer pointer to 2D array topic, page 199)

This program finds the biggest string from N strings.

(Here biggest means alphabetically comes to last in dictionary order)

 #include<stdio.h>

 #include<string.h>

 void main()

 { char a[20][30], *temp, n, i;

 printf(enter number of strings :");

 scanf("%d",&n);

 for(i=0; i<n; i++)

 { printf(“enter string %d :", i+1);

 fflush(stdin); // clears the keyboard buffer

 gets(a[i]);

 }

 temp=a[0], // assume the first string as the biggest

 for(i=1; i<n; i++)

{ if(strcmp(a[i], temp) > 0)

 temp=a[i];

}

printf("Biggest string = %s", temp);

 }

In the above program, the first string is considered as bigger; therefore its base address is stored in 'temp'

pointer. Later all strings are compared with 'temp', if any bigger string is found in the rest of array, then its

address is copied to 'temp'. In this way, finally biggest string address will be stored in ‘temp'.

 C-Family 228 Strings

Sorting of ‘N’ Strings
We can sort strings just like integers, but strings cannot be compared using > operator, because base

address are compared instead of string’s characters. So the library function strcmp() is used to compare two

strings. Following program gives demo for sorting of N strings.

#include<string.h>

void main()

{ char a[20][30]; int n;

 scan(a,&n); // scans n strings

 sort(a,n); // using bubble sort

 print(a,n); // printing all string

}

void scan(char a[][30] , int *pn)

{ int i;

 printf(“enter number of strings :");

 scanf("%d", pn);

 for(i=0; i<*pn; i++)

 , printf(“enter string %d :",i+1);

 fflush(stdin); // clears keyboard buffer

 gets(a[i]); // inputting i
th

 string

 }

}

void sort(char a[][30] , int n) // bubble sort

{ int i, j, k; char t[30];

 for(i=n-1; i>0; i--)

 for(j=0; j<i; j++)

 { if(strcmp(a[j],a[j+1] > 0)

 { strcpy(t,a); // swapping the strings

 strcpy(a,b);

 strcpy(b,t);

 }

 }

}

 void print(char a[][30], int n)

 { int i;

 for(i=0; i<n; i++)

 puts(a[i]);

 }

 C-Family 229 Strings

Initialization of strings to the pointer array

If string constants are fixed and do not require any modifications during program execution then it is better

to initialize to the pointer array rather than normal 2D array, because, it saves a lot of memory space and

also easily manageable such as swapping of strings, sorting of strings, inserting a new string b/w strings,

deleting existing string, etc. Here addresses are manipulated instead of its data.

For example: char *p[] = {"crore", "lakh", "thousand", "hundred"};

Here all these strings are stored in the data area of a program, and their addresses are assigned to the

pointers. Here memory occupied by each string is equivalent string length+null. This is as given below

P[0] P[1] p[2] P[3]

2020 2090 3012 5378

“crore” “lakh” “thousand” “hundred”

2020 2090 3012 5378

This program accepts a number and prints in English words

 Input: 2345

 Output: two thousand three hundred and four five

 #include<stdio.h>

void main()

 { char *a[] = {"", "one","two","three","four","five","six","seven","eight","nine"};

 char *b[] = {"","", "twenty", "thirty","foury","fifty","sixty", "seventy", "eighty","ninty"};

 char *c[]={"crore", "lakh", "thousand", "hundred and",""};

 long int d[]={10000000l,100000l,1000l,100,1}, n, quotient, i;

 printf("enter any number :");

 scanf("%ld",&n);

 for(i=0; n>0 ;i++)

 { quotient=n/d[i];

 if(quotient==0) continue;

 if(quotient<20) printf(" %s ", a[quotient]);

 else printf(" %s %s ", b[quotient/10], a[quotient%10]);

 printf(" %s ", c[i]);

 n=n%d[i];

 }

 }

Here the input number divides repeatedly with crore, lakh, thousand, hundred, etc

If quotient is zero then there is nothing to print on the screen so loop continues for next cycle.

Otherwise, prints equivalent words in English and takes remainder as next input for next cycle.

 C-Family 230 Recursion

Recursion
Calling a function within the same function is called as recursion. It is the process of defining something in

terms of itself, and sometimes also called as circular definition.

The syntax, the usage, and the execution of recursive function is just like any normal function. There is no

technical difference between recursive and normal function. However, for beginners, the logic of recursion

is somewhat difficult to understand and writing programs in it. The major confusion is, understanding the

logic regarding self-calling, self-returning, and how the arguments & local variables are managed in

recursive-calls. If you are familiar with functions, here by observing some simple examples we can follow the

logic easily. Here some examples explained with pictures to understand the basic concept of recursion.

Before going to examples, let us see some mathematical analysis on recurrence relations.

1) f(n)=n+n/2+n/4+n/8+….+1

 the recurrence relation is:

 f(n)=n+f(n/2) if n>1

 f(n)=1, if n==1

2) fact(n) = n*n-1*n-2*….3*2*1

 the recurrence relation is:

 fact(n)=n*fact(n-1), if n>1

 fact(n)=1, if n==1

3) power(x,y) = x*x*x*x….y times

 the recurrence relation is:

 power(x,y) = x*power(x,y-1), if y>1

 power(x,y) = 1, if y>0

===

First demo program

 void main()

 { printf(“hello ”);

 main(); // self-calling (recursive-call)

 }

output: hello hello hello hello … until stack overflow (memory full)

Here the main() fn called recursively inside its body, therefore the control re-enter into same body again and

again as it repeatedly calling again and again(), it prints “hello” many times, but in every recursive call some

memory is consumed by operating system(OS) to store function-return-address, so after some calls, the

memory gets full and program stopped forcefully by OS. This force stop is also called program crash. This is

just a demo program and I am trying to say about recursion.

Let us see, how local variables behave inside recursive function.

 C-Family 231 Recursion

 void main()

 { int k=1;

 if(k==5)

 return;

 printf(“%d ”, k);

 k++;

 main(); // self-calling (recursive-call)

 }

Here we expect the output 1, 2, 3, 4, but it is wrong. It shows 1, 1, 1, 1, 1, … until memory is full. For every

recursive call, one new copy of ‘k’ is created and initialized with 1(as above pic). So output is 1, 1, 1, 1…..

Here the k value never reaches to 5, because the ‘k++ incremented’ value at one call, will not be affected to

next call of ‘k’, so always prints 1,1,1,1….. until memory is full.

Note: as new copy of ‘k’ is created in every call, the memory gets full after some calls and OS stops our

program.

Points to understand Recursion

 When a recursive function is called itself, the programmer should be treated as, he is calling another

function(copy) of same code as shown in the below figure. Of course, in the memory, same function

body will be executed like a loop.

 For every recursive call, one set of local variables (in this example ‘k’) are created and available up to

that call is terminated. That is, when such call is terminated, all local variables are freed (deleted).

 Recursive function executes like a loop statement, as we know, every loop has a terminating condition,

in the same way, to stop the recursive calls, there must be a termination condition and it is often called

base condition. Generally, it appears at the beginning of function (we will see in the next examples).

This figure explains how the recursive calls should be imagined for above example

Call-1 Call-2 Call-3 Call-4

void main()
{ int k=1;
 if(k==5)
 return;
 printf(“%d ”, k);
 k++;
 main();
}

void main()
{ int k=1;
 if(k==5)
 return;
 printf(“%d ”, k);
 k++;
 main();
}

void main()
{ int k=1;
 if(k==5)
 return;
 printf(“%d ”, k);
 k++;
 main();
}

void main()
{ int k=1;
 if(k==5)
 return;
 printf(“%d ”,k);
 k++;
 main();
}

*Here in every recursive call, one fresh copy of ‘k’ is created initialized with 1, the incremented k++ will not

be affected to next call. So output is 1 1 1 1….

Taking ‘k’ as parameter instead of local variable, let us see following examples

call-1 of k

call-2 of k call-3 of k call-x of K

 C-Family 232 Recursion

Expect the output of following program

 void main()

 { display(1); // passing the argument 1

 }

 void display(int k)

 { if(k==4)

 return; // termination of recursion

 printf(" A ");

 printf(" B ");

 display(k+1); // recursive call

 printf(" C ");

 printf(" D ");

 }

Output: AB AB AB CD CD CD

For every next call, we are passing k+1 value as argument, therefore at first-call k=1, at second-call k=2,…

at fourth-call k=4, here terminates the recursion and returns the control.

When above ‘return’ statement gets executed in recursion, many people think that, the control

immediately transfer back to main(), this is the big misunderstanding people think like that,

actually here the control returns to previous-call in this series of calls. Here is the following

picture explains it clearly.

* The last closing braces of function works as ‘return‘ statement, observe above shown picture.

* Here 4th call returns to previous 3rd call, and 3rd call returns to previous 2nd call, in this way recursive calls

are returned & terminated. The above picture is the best view how the recursive calls can be imagined.

* In recursive function, all instructions which are above recursive-call are executed just before going to

next call, so output is AB AB AB, and all below instructions are executed just before returning to

previous call, so output is CD CD CD.

* The main difference between loop and recursion is, loop works on single data set variables, whereas

recursion works on multiple data set variables.

void main()
{ display(1);
}

1

st
call, here k=1

2

nd
 call, here k=2

3

rd
 call, here k=3

4

th
 call, here k=4

void display(int k)
{ if(k==4)
 return;
 printf(“%d “, A);
 printf(“%d “, B);
 display(k+1);
 printf(“%d “, C);
 printf(“%d “, D);
}

void display(int k)
{ if(k==4)
 return;
 printf(“%d “, A);
 printf(“%d “, B);
 display(k+1);
 printf(“%d “, C);
 printf(“%d “, D);
}

void display(int k)
{ if(k==4)
 return;
 printf(“%d “, A);
 printf(“%d “, B);
 display(k+1);
 printf(“%d “, C);
 printf(“%d “, D);
 }

void display(int k)
{ if(k==4)
 return;
 printf(“%d “, A);
 printf(“%d “, B);
 display(k+1);
 printf(“%d “, C);
 printf(“%d “, D);
}

 C-Family 233 Recursion

*Printing 1 2 3 3 2 1 recursively

 void main()

 { display(1); // passing argument 1

 }

 void display(int k)

 { if(k==4) return;

 printf("%d ", k); // printing output before going to next-call

 display(k+1);

 printf("%d ", k); // printing output after coming back from next-call

 }

Here the output '1 2 3' prints by first printf(“%d “, k), whereas second output '3 2 1' prints by second

printf(“%d “, k) statement. The first printf() executes just before next call is made. Whereas second printf()

executes after returning from next-call.

This figure shows how the output 1 2 3 3 2 1 prints on the screen.

Printing output N, N/2, N/4, N/8, N/16, ...1 using recursion

This function takes N as argument and prints the output from N to 1.

 ip: N=100 op: 100, 50, 25, 12, 6, 3, 1

 void main()

 { scanf(“%d”, &N);

 show(N);

 }

 void show(int N)

 { if(N==0) return;

 printf(“%d “, N);

 show(N/2); // sending half value to next call

 }

Note: Most of the recursive programs covered in this chapter are simple and these can be done

using any loop control statements rather than recursion. For these problems, loop is simpler than

recursion; just to make easy understanding of recursion, these problems explained in recursion.

But the last two problems in this chapter can’t be solved using loops.

void main()
{ display(1);
}

1

st
call, here k=1

2

nd
 call, here k=2

3

rd
 call, here k=3

4

th
 call, here k=4

void display(int k)
{
 if(k==4)
 return;
 printf(“%d “, k);
 display(k+1);
 printf(“%d “, k);
}

void display(int k)
{
 if(k==4)
 return;
 printf(“%d “, k);
 display(k+1);
 printf(“%d “, k);
}

void display(int k)
{
 if(k==4)
 return;
 printf(“%d “, k);
 display(k+1);
 printf(“%d “, k);
}

void display(int k)
{
 if(k==4)
 return;
 printf(“%d “, k);
 display(k+1);
 printf(“%d “, k);
}

 C-Family 234 Recursion

Printing 1 to N numbers using recursive function

 ip: N=13

 op: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.

 void main()

 { scanf(“%d”, &N);

 show(N);

 }

 void show(int N)

 { if(N==0) return;

 show(N-1);

 printf(“%d “, N); // the value N is printed while returning control to previous call

 }

when ‘N’ reaches to 0, the recursive calls are stopped, and prints the ‘N’ value from last-call to first-call while

returning control to previous calls.

Guess the output

 void main()

 { show(1);

 }

 void show(int N)

 { if(N == 6)

 { printf(“ and “);

 return;

 }

 printf(“ hello “);

 show(N + 1);

 printf(“ world “);

 }

Printing Multiplication table using recursion

 Output: 8*1=8

 8*2=16

 8*3=24

 … 10 terms

 void main()

 { printTable(8 , 1); // here ‘8’ is table number , ‘1’ is first term value.

 }

 void printTable(int n , int i)

 { if(i==11) return;

 printf("\n %d*%d=%d", n, i, n*i);

 printTable(n, i+1); // i+1 is the next term value

 }

 C-Family 235 Recursion

Printing Multiplication table upto desirable number of times

 void main()

 { printTable(8 , 20); // here ‘8’ is table number, 20 is the number of terms to print.

 }

 void printTable(int n , int i)

 { if(i==0) return;

 printTable(n, i-1);

 printf("\n %d*%d=%d", n, i, n*i);

 }

Printing output 1, 2, 4, 8, 16, …. <1000 using recursion

 void main()

 { show(1); // ‘1’ is the first value of series

 }

 void show(int P)

 { if(P>1000) return;

 printf(“%d “, P); // p = 1, 2, 4, 8, 16 …

 show(P*2);

 }

Printing output 1, 2, 4, 8, 16, …. 7 times using recursion

 void main()

 { show(1, 7); // ‘1’ is the first term of series and 7 is the number of times to print

 }

 void show(int P, int count)

 { if(count==0) return;

 printf(“%d “, P); // p = 1, 2, 4, 8, 16… , count=7,6,5,4,3,2,1

 show(P*2 , count-1);

 }

Generate and print list of numbers from N to 1

Here N is input from keyboard and print list of numbers as long as the value of N becomes 1.

if N is even then next number of N is → N/2 (half)

if N is odd then next number of N is → 3N + 1

if input N is 13, then we have to print as: 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

 void main()

 { int N=13;

 show(N);

 }

 void show(int N)

 { printf(“%d “, N);

 if(N==1) return;

 if(N%2==0) show(N/2);

 else show(3*N+1);

 }

 C-Family 236 Recursion

Guess the output

 void main()

 { show(345);

 }

 void show(int N)

 { if(N==0) return 0;

 show(N/10);

 printInEnglish(N%10);

 }

 void printInEnglish(int digit)

 { if(digit==0) printf(“zero”);

 else if(digit==1) printf(“one”);

 else if(digit==2) printf(“two”);

 else if(digit==3) printf(“three”);

 }

Guess the output

 void main()

 { int N=8;

 show(0, 1, N);

 }

 void show(int x, int y, int N)

 { if(N==0) return;

 print(“%d “, x);

 show(y, x+y, N-1);

 }

Complete the following code to print output as shown below(do not use loops)

 123456789

 123456789

 5 rows

 void main()

 { int rows=5; // no.of rows to print

 show(rows);

 }

 void show(int row)

 { ------

 printRow(9); // this function prints 1 to 9 values of a row

 ------ // call show() recursively 5 times, for 5 rows

 }

 void printRow(int i)

 { if(i==0) return;

 printRow(i-1);

 printf(“%d “, i); // prints each row here

 }

 C-Family 237 Recursion

Guess the output (Decimal to Binary)

Process: continuously divide N with 2 and collect the remainders, the remainders collection forms a binary

 void main()

 { show(13);

 }

 void show(int N)

 { if(N==0)

 return;

 show(N/2); // N=N/2 13, 6, 3, 1 output  1%2, 3%2, 6%2, 13%2

 printf(“%d”, N%2);

 }

Printing all factors of 15

 ip: 15 , op: 1, 3, 5, 15

 void main()

 { show(15, 1) ;

 }

 void show(int n , int i)

 { if(i>n) return;

 if(n%i==0)

 printf(“%d “, i);

 show(n , i+1);

 }

Program to add 7+7+7 … 4 times (it doesn’t work, check out)

 void main()

 { k=find(4);

 printf(“ %d “ , k); ?

 }

 int find (int count)

 { int sum=0;

 if(count==0)

 return sum;

 sum=sum+7;

 return find(count-1);

 }

output: 0 (Wrong output)

The above function produces wrong output. Because, for every recursive call, one fresh copy of local

variable ‘sum’ is created and initialized with 0. The added value 7 will not be affected to next call.

To solve this problem take ‘sum’ as parameter and pass ‘sum’ value to next-call. See next problem

At 1
st

 call
int sum=0
sum=sum+7
 = 0+7

At 2
nd

 call
 int sum=0
 sum=0+7
 =0+7

 At 3
rd

 call
 int sum=0
 sum=sum+7
 =0+7

 At 4
th

 call
 int sum=0
 sum=sum+7
 =0+7

At 5
th

 call
 int sum=0
 return sum
// returns ‘0’

 C-Family 238 Recursion

Above program with ‘sum’ as parameter (works fine)

 void main()

 { k = find(4 , 0);

 printf(“ %d “, k);

 }

 int find (int count , int sum)

 { if(count==0)

 return sum;

 sum=sum+7;

 return find(count-1 , sum);

 }

here ‘sum’ is a parameter, the added 7 value is passed to next calls, at 1st call the sum=0, at 2nd call the

sum=7, at 3rd call the sum=7+7, ….

Above program without parameter (simplified)

 void main()

 { k=find(4);

 printf(“ %d “, k); ?

 }

 int find (int n)

 { if(N==0) return 0;

 return 7 + find(n-1);

 }

Note: Myself, I solved many problems in recursion, but most of result calculating functions comes under

above two logics only. this logic is better than above program logic.

Guess the output

 void main()

 { k=find(345);

 printf(“ %d “, k); ?

 }

 int find (int N)

 { if(N==0) return 0;

 return N%10 + find(N/10);

 }

At 1
st

 call
int sum=0
 sum=sum+7
 = 0+7

At 2
nd

 call
 int sum=7
 sum=sum+7
 = 7+7

 At 3
rd

 call
 int sum=14
 sum=sum+7
 =14+7

 At 4
th

 call
 int sum=21
 sum=sum+7
 =21+7

At 5
th

 call
 int sum=28
 return sum;
// returns 28

First call (n=4) Second call (n=3) Third call (n=2) Fourth call (n=1) Fifth call (n=0)

int find(int n)
{
 if(n==0)
 return 0;
 return 7+find(n-1) ;
}

// return 7+7+7+7+0

int find(int n)
{
 if(n==0)
 return 0;
 return 7+find(n-1) ;
}

// return 7+7+7+0

int find(int n)
{
 if(n==0)
 return 0;
 return 7+find(n-1) ;
}

// return 7+7+0

int find(int n)
{
 if(n==0)
 return 0;
 return 7+find(n-1) ;
}

// return 7+0

int find(int n)
{
 if(n==0)
 return 0;
 return 7+find(n-1) ;
}

// return 0

 C-Family 239 Recursion

Finding factorial of a given number using recursive function

 The recursive definition of a factorial can be written in mathematical form as
 f (n) = n * f (n - 1) i f n>1
 f (n) = 1 i f n = 0 o r 1
 f (5) = 4 * f (3)
 4 * 3 * f (2)
 4 * 3 * 2 * f (1)
 4 * 3 * 2 * 1 = 2 4

 int fact(int n)
 { if(n==1)
 return 1; // base condition

 return n*fact(n-1); // fact(n-1) is a recursive call

 }

 void main()
 { int k;
 k=fact(4);
 printf("%d ",k);
 }

 Finding factorial in iterative process (using loop) is simple & easy compared to recursion. This is just a

demo program to explain the logic of how the recursion executes.

 The last call returns ‘1’ and it is substituted in its previous-call, the previous-call again returns ‘2*1’ and is

substituted in its previous call. In this way, the final result 24 is returned to main() fn.

Finding xy, where ‘x’ is base and ‘y’ is exponent

The recurrence relation is

 fun(x,y) x*fun(x , y-1) if y>1

 fun(x,y)  1 if y==0

 int power(int x, int y)

 { if(y==0)

 return 1;

 return x*power(x, y-1);

 }

 void main()

 { int a=2,b=3,c;

 c=power(a,b);

 printf("\n %d^%d=%d",a,b,c);

 }

First call (n=4) Second call (n=3) Third call (n=2) Fourth call (n=1)

int fact(int n)
{
 if(n==1)
 return 1;
 return n*fact(n-1);

}

// return 4*3*2*1

int fact(int n)
{
 if(n==1)
 return 1;
 return n*fact(n-1);

}

// return 3*2*1

int fact(int n)
{
 if(n==1)
 return 1;
 return n*fact(n-1);

}

// return 2*1

int fact(int n)
{
 if(n==1)
 return 1;
 return n*fact(n-1);

}

// return 1

 C-Family 240 Recursion

Recursive function to find GCD. (Greatest Common Divisor)

This program finds the greatest common divisor of two numbers

Let the input values are x & y, where x<y. (The given below logic also works for x>y)

The recursive definition can be written in mathematical form as

 f(x,y)=f(y%x , x) if y%x != 0

 f(x,y)=x. if y%x == 0

The logic is, continuously divide the y with x until the remainder is zero.

Here take y as dividend and x as devisor.

If y%x is zero then x will be the GCD and stop the process.

If y%x is not zero then take x value to y and y%x value to x for next cycle.

Do this process until y%x==0.

For example, the input values are 12 and 18 then the function and their calls are as

Printing Fibonacci numbers up to n terms

Recursive function to print Fibonacci series up to user desirable limits.

 void fibo(int count)

 { int x=0, y=1, new; // here x, y, new are local variables to the function.

 if(count==0) return; // stop condition

 printf("%d ", x);

 new=x+y; // generating next new term

 x=y; y=new; // moving x,y to next terms

 fibo(count-1); // repeat until ‘count’ down to 0.

 }

First call (x=2, y=3) Second call (x=2, y=2) third call (x=2, y=1) Fourth call (x=1 , y=0)

int power(int x, int y)
{
 if(y==0)
 return 1;
 return x*power(x,y-1);

}

// return 2*2*2*1

int power(int x, int y)
{
 if(y==0)
 return 1;
 return x*power(x,y-1);

}

// return 2*2*1

int power(int x, int y)
{
 if(y==0)
 return 1;
 return x*power(x,y-1);

}

// return 2*1

int power(int x, int y)
{
 if(y==0)
 return 1;
 return x*power(x,y-1);

}

// return 1

 x=12, y=18 x=6, y=12

void main()
{ int k;

 k=GCD(12 , 18);

 printf(“\n gcd=%d”, k);
}
 k=6

int GCD(int x, int y)
{
 if(y%x==0)
 return x;
 return GCD(y%x , x) ;
} 6

return(6)

int GCD(int x, int y)
{
 if(y%x==0)
 return x;
 return GCD(y%x , x);
}

return(6)

 x y

12) 18 (1

 12

 6

x y

6) 12 (2

 12

 0

 stop

 C-Family 241 Recursion

 void main()

 { printf("enter how many no of terms to print:");

 scanf("%d", &n);

 fibo(n);

 }

output: 0 0 0 0 0 0 0 0 0 0 0 0 0…… (Wrong output)

The above function produces wrong output. Because, for every recursive call, one fresh copy of local

variables x &y are created and initialized with 0 and 1. (We already discussed many times)

To solve this problem take x,y as parameters and pass one-call updated values to next-call.

This is shown below

 void fibo(int x, int y, int count)

 { if(count==0) return; // repeat until ‘count’ down to 0.

 printf("%d ", x);

 fibo(y, x+y, count-1);

 }

 void main()

 { int count;

 printf("enter how many no of terms to print:");

 scanf("%d", &count);

 fibo(0, 1, count);

 }

 int k=1;

 int k;

 void main()

 { show(); // at this call, output is 1 2 3 4

 show(); // at this call, no output

 }

 void show()

 { if(k==5) return;

 printf(“%d “, k);

 k++;

 show();

 }

op: 1 2 3 4

we expect output as 1 2 3 4 1 2 3 4 [as two times show() fn called from main() fn], as ‘k’ is global variable,

only one copy is created and shared to all calls. After printing 1 2 3 4 at first call, the k attains 5 and will not

be re-initialized to 1 for next calls. So no output is displayed for next calls. As per this experience, we don’t

recommend static and global variables in the recursion.

In this program, one may think that, only one copy of x & y is enough for all calls rather than

creating a fresh copy in every call. So to avoid more copies, we can declare x, y as

static/global. But this creates another problem! Once the static/global variable is created, it

will not be killed even after function call ends; moreover they cannot be reinitialized for

upcoming calls. Let us have one more example with global variable

 C-Family 242 Recursion

Guess the output of following program

 void main()

 { int a[5]={ 10 , 20 , 30 , 40 , 50 } ;

 show(a , 5);

 }

 void show(int *p , int n)

 { if(n==0) return;

 printf(“%d ”, *p);

 show(p+1 , n-1);

 }

Guess the output of following program

 void main()

 { show(“Hello”);

 }

 void show (char *p)

 { if(*p==’\0’)

 return;

 show(p+1);

 printf(“%c”, *p);

 }

Guess the output of following program

 void main()

 { show(“APPLE”);

 }

 void show(char *p)

 { if(*p==’\0’)

 return;

 printf(“%s\n”, p);

 show(p+1);

 }

Finding Nth Fibonacci number using recursion (double recursive calls)

Consider the first two terms are 0 & 1 and remaining terms generated by adding previous two values.

 fibo(n) = fibo(n-1)+fibo(n-2). if n>2

 fibo(n) = 0. If n==1

 fibo(n) =1. If n==2

Fibo(5)  fibo(4)+fibo(3)

  fibo(4-1)+fibo(4-2)+fibo(3-1)+fibo(3-2)

  fibo(3-1)+fibo(3-2) + fibo(2)+fibo(2)+fibo(1)

  fibo(2)+fibo(1)+fibo(2)+fibo(2)+fibo(1)

 1+0+1+1+0  3

 a a[0] a[1] a[2] a[3] a[4]

2000 10 20 30 40 50

4000 2000 2002 2004 2006 2008

after
p++

2002

8000

0 1 1 2 3 5 8 13 21 34 55 89 …
1 2 3 4 5 6 7 8 9 10 11 12 ..

 C-Family 243 Recursion

 void main()

 { int n=5;

 x=find(n);

 printf(“ the Nth term = %d”, x);

 }

 int fibo(int n)

 { if(n<=2) return(n-1);

 return fib(n-1)+fibo(n-2);

 }

Observe the following figure and try to understand how recursive calls are made.

While terminating function calls, the following statements are gets executed

int fibo(int n : 5)

{ if(n<=2)

 return(n-1);

 return fibo(n-1)+fibo(n-2);

}

int fibo(int n : 2)

{ if(n<=2)

 return(n-1);

 return fibo(n-1)+fibo(n-2);

}

int fibo(int n : 1)

{ if(n<=2)

 return(n-1);

 return fibo(n-1)+fibo(n-2);

}

int fibo(int n : 4)

{ if(n<=2)

 return(n-1);

 return fibo(n-1)+fibo(n-2);

}

int fibo(int n : 3)

{ if(n<=2)

 return(n-1);

 return fibo(n-1)+fibo(n-2);

}

int fibo(int n : 1)

{ if(n<=2)

 return(n-1);

 return fibo(n-1)+fibo(n-2);

}

int fibo(int n : 2)

{ if(n<=2)

 return(n-1);

 return fibo(n-1)+fibo(n-2);

}

int fibo(int n : 3)

{ if(n<=2)

 return(n-1);

 return fibo(n-1)+fibo(n-2);

}

int fibo(int n : 1)

{ if(n<=2)

 return(n-1);

 return fibo(n-1)+fibo(n-2);

}

 return (2+1)

return(1+1) return (1+0)

return(2-1) return(1+0)

return (2-1) return (1-1)

return(2-1) return(1-1)

 C-Family 244 Recursion

Program to print all permutations of a given string
 input: ABC output: ABC , ACB , BAC , BCA , CAB , CBA

 int main()

 { char a[]= "ABC";

 permute(a, 0, strlen(a)-1);

 }

 void permute(char a[] , int i, int len)

 { int j;

 if(i==len)

 { puts(a); return;

 }

 for(j=i; j<=len; j++)

 { k=a[i]; a[i]=a[j]; a[j]=k; // swapping a[i], a[j]

 permute(a, i+1, len);

 k=a[i]; a[i]=a[j]; a[j]=k; // swapping a[i], a[j]

 }

 }

Program to traverse entire chessboard with Knight (horse)

 The following demo program is to traverse the entire chessboard with knight. Here Night visits every cell

only once and it follows the rules of its movement ie, it moves only in L shape. This function takes x, y

coordinates of first step of 8x8 board and displays order of movements in terms of step-number of every

cell. Following figure gives an idea

 int steps[8][2]={{-2,-1}, {-2,+1}, {-1,+2},{+1,+2}, {+2,+1}, {+2,-1},{+1,-2},{-1,-2}};
 // this values are to choose all 8 possible L shape steps from the current standing step

 int a[8][8]; // chess board, where step movements are recorded.

 #define bSIZE 5 // currently we are taking chess board size as 5

 void main()

 { int x,y;

 printf("enter first step x, y values :");

 scanf("%d%d", &x, &y);

 chess(x,y,1); // x,y are first step-step cell values, and 1 is first-step order

 }

 chess(int r, int c, int stepNo)

 { int i;

 if(r<0 || r>bSIZE-1 || c<0 || c>bSIZE-1 || a[r][c]!=0) // if stepped out of chess board area

 return; or already such cell is entered then go back

 a[r][c]=stepNo; // making a cell as visited

 gotoxy(10+c*4, 10+r*2); // printing in a particular position

 printf("%4d", stepNo); // printing step number on the screen

 delay(1000); // delaying program to watch steps carefully

 if(kbhit()) exit(0); // if any key pressed program will be stopped

 if(stepNo==bSIZE*bSIZE) exit(0); // if reaches all cells, then program stops

 6

 1

 7 5 2

 4

 8.. 3

 C-Family 245 Recursion

 for(i=0; i<8; i++) // stepping into next cell by choosing 8 possibilities

 chess(r+steps[i][0], c+steps[i][1], stepNo+1);

 a[r][c]=0; // if next choosing position is not good then go back

 gotoxy(10+c*4, 10+r*2); // removing step from screen

 printf(" ");

 delay(1000);

 }

Advantages and Disadvantages of recursion

Every recursive algorithm can be converted into non-recursive with the help of loop control and sometimes

with stack. However, doing so, some programs may increase the complexity in code and prone to logical

errors, and even it is difficult to debug the iterative code. So coding recursive nature problems, recursion is

simpler than iterative process.

Recursive function slows the execution of program because of creation & destroying of local variables.

Additional storage space also required to store function return-address. But writing code in recursion is easy,

clear, and modify.

We know passing arguments from one to another function is common in modular programming. If any set of

arguments need to be passed to a recursive function, then same set of arguments have to be passed for

every call, even though they are unnecessary. In some cases, it is useful, however, in some other cases, it

seems to be unnecessary, ie, one copy is enough for all calls. There is no alternative to overcome this

problem. One might think that about usage of static or global variables, but once static variable creates, it

will exist till the end of program. Second time if the same function is called it will not be reinitialized

automatically. So using such variable is not suggestible.

Conclusion
If your recursive application needs to be used frequently which is considerably making unnecessary copy of

local variables and if you are fit enough to write non-recursive code then it is most advisable to implement in

non-recursive as it would be faster and takes lesser space.

If an application is very complex, having rare usage, and taking less space for local variables, then it is better

to implement recursive rather than non-recursive. Recursive is simple and easy to code

It is the programmer’s choice, which method is to be used when and where. If execution time and space are

not constraints, then it is better to implement recursive application.

Implementation of recursion nature problem in non-recursive using loop and stack is an advanced concept.

That topic is beyond the scope of this book.

 C-Family 246 Recursion

 C-Family 247 Dynamic Memory Allocation

Memory Allocation Systems
We have two memory allocation systems ① static allocation ② dynamic allocation

Allocating memory at compile time is said to be static allocation, this is created and managed by the

compiler. Allocating memory at runtime based on input data is said to be dynamic allocation.

Static allocation system
if size of data is known at coding time then static allocation is the good choice. The static allocation system is

managed by compiler by adding necessary machine code instructions in the program. The compiler adds

extra instructions in our program for allocation/de-allocation of memory for our variables. So programmer

need not to bother about how to create and destroy variable’s memory in the program.

Let us see following example

Here compiler creates 206 bytes for int a, b, c[100], d. It adds instructions for allocation & de-allocation of

memory as shown above. [It creates memory in stack as stack.push(206) and stack.pop(206)]

The static allocation system is much suitable when we know the size of data like employee-name(25 chars),

address(50 chars), pin-code(long-int=4 bytes), phone-number(long-int 4 byte),…

Dynamic Memory Allocation system
in many real time systems, the size of data not known or cannot be expected until runtime. Here dynamic

system is the choice. Dynamic allocation refers to allocation of memory during execution of program. Here

programmer has to write special instructions to allocate & de-allocate memory with the help of pointers.

This DMA system provides us to create, expand, reduce, or even destroy the memory at runtime. This

feature is very much useful for efficient memory management especially while handling huge collection of

data using ‘data structures’ for example arrays, lists, stacks, queues, trees, graphs, etc. To work with this

feature, C provides the following 4 built-in functions

 1. malloc() // include alloc.h or malloc.h file to use these functions

 2. calloc()

 3. realloc()

 4. free()

malloc()
It allocates user wanted size of memory and returns the starting byte address of allocated memory. This

allocated memory is said to be raw-memory and we can store any type of data such as int, float, char, etc.

For this reason, malloc() returns this memory address as generic type (no specific type). That is, it returns

address as “void*” type and it is often called generic address. Unfortunately, if memory is not available then

malloc() returns NULL value.

 prototype: void* malloc(unsigned int);

 syntax: pointer= malloc(no of bytes to be allocated);

 example: p=malloc(10); // creates 10 bytes of memory and returns starting address to ‘p’

void test()
{
 int a, b, c[100],d ;

}

void test()
{

 At this line, compiler adds extra machine code instructions to allocate
 206 bytes of memory for these a, b, c[], d.

 At this line, compiler adds extra machine code instructions to free such
 206 bytes of memory which is allocated above.
 (before closing the test() function)
}

 C-Family 248 Dynamic Memory Allocation

In the above example, the function ‘malloc()’ allocates 10 bytes of memory in the RAM and returns the

starting byte address, which is then assigned to 'p'. Here one question arises! What type of pointer ‘p’

should be? This is fairly depends upon what type of data which we are going to keep in this memory.

Suppose if you are going to store array of float values then pointer should be “float*” type. Remember that,

malloc() returns just address which has no specific type, that is, it returns “void*” type address. So it should

be type-casted as per our pointer type. (All these functions return-type is void* type only)

Example: Allocating memory for ‘n’ integers
 int n, *p;

 scanf(“%d”, &n);

 p= (int *)malloc(n*sizeof(int));

The above allocated memory maps to the pointer ‘p’ is as follows:

How to access dynamic memory?

Accessing this memory is same as accessing array elements through pointer.

Observe the following expressions
*(p+0)  p[0] accesses the first location (first 2bytes)

*(p+1)  p[1] accesses the second location (second 2bytes)

 *(p+2)  p[2] accesses the third location

 *(p+ i)  p[i] accesses the i+1th location.

The link between arrays and pointers already discussed in pointer chapter, please refer it.

If you are creating memory for floating point values, then float* type pointer is required.

For example creating memory for ‘N’ floats. Here ‘N’ is the input value

 float *p;

 scanf(“%d”, &N);
 p=(float *)malloc(N * sizeof(float));

Demo program, accepting ‘N’ integers and printing
 #include<alloc.h>
 void main()

 { int n, i, *p;

 printf(“enter no.of input values:”);

 scanf(“%d”, &n);
 p=(int*) malloc(sizeof(int) * n);

 if(p==NULL)

 { printf(“\n error, memory not created");

 return;

 }
 for(i=0; i<n; i++)

 { printf("enter any value :");

 scanf(“%d", &p[i]);

 }

 P[0] P[1] P[2] P[3] P[4]

P *p *(p+1) *(p+2) *(p+3) *(p+4)

2000

4000 2000 2002 2004 2006 2008

P p[0]
*p

P[1]
*(p+1)

P[2]
*(p+2)….

2000

4000 2000 2004 2008….

Converting void* to int*

 C-Family 249 Dynamic Memory Allocation

 for(i=0; i<n; i++)

 printf("%d “, p*i+);
 }

In the above, the malloc() creates memory for n-integers, later accessing through the pointer ‘p’. Here the

input size can be anything, thus it makes efficient usage of memory.

calloc()
It is also like malloc(), but after allocation of memory, it clears the garbage values by filling with zeros in all

bytes of memory.

 pointer = calloc (no.of items, size of item);

It takes two arguments, first one is number of items to be allocated and second one is size of item. For

example, allocating memory for 5 floats

 float *p;

 p = (float *) calloc(5, sizeof(float));

realloc()
It is used to resize (reduce or expand) the memory which is already allocated using malloc() or calloc() or

realloc(). It takes previously allocated memory address and adjusts to new size.

 syntax: pointer = realloc(oldAddress, newSize);

For example

 int *p,

 p=(int*)malloc(10*sizeof(int));

p=(int*)realloc(p , 20*sizeof(int)); // increasing size 10 integers to 20 (10 integer’s space added)

p=(int*)realloc(p , 5*sizeof(int)); // reducing size 20 integers to 5 (15 integer’s space reduced)

Note: p=(int*)realloc(NULL, 10*sizeof(int)) // here oldAddress is null, so it creates fresh memory like malloc() function.

While expanding the size of old memory, if required amount of memory is not available at the adjacent

locations, then it allocates in new location and copies the old memory contents to new location and then

releases the old memory. If the memory is not available, then it returns null.

free()
It is used to release the memory which is no longer required by the program. This memory should not

belongs to static allocated system like “int a[10]”. This must be a dynamic memory which is allocated by

malloc() or other functions. It takes the base address of memory as an argument and frees it.

 Prototype: void free(void *);

 Syntax: free(address);

 Example: int *p;

 p=(int *)malloc(50*sizeof(int));

 free(p);

 C-Family 250 Dynamic Memory Allocation

Prone and cons of systems
* Program’s data area divides into stack & heap area. In stack area, the temporary local variables and

function-call return addresses are stored, whereas in heap area, permanent variables are stored.

For DMA system a special block of memory is created in the RAM and managed as heap.

* In static allocation system, at coding time (before compilation), the size of array must be given with

constant value like “int a[100]” and it cannot be changed at run time.

* Static allocation system is faster than dynamic, because allocation of memory in the stack is faster than

heap. In static system, at compile time, the relative memory address is given to all variables, so it will be

faster. Whereas in DMA system, at run time, the memory is allocated by searching a suitable location and

also maintains a separate table for registering address which location is allocated and which is not, this

makes the program slow. If size is known then static is the good choice otherwise dynamic is the choice.

Program accepts N strings (country names) and prints them

This program accepts strings one by one until user entered termination string as “end”.

 Later displays all such inputted strings on the screen.

 #include<stdio.h>

 #include<string.h>
 #include<alloc.h>
 void main()
 { char **p=NULL;
 int count=0,i;
 char a[50];
 while(1)
 { printf("enter country name :");
 fflush(stdin);
 gets(a);
 if(strcmpi(a , "end") ==0) break;
 p=(char**) realloc(p,sizeof(char*) * (count+1));
 p[count] = (char*)malloc(sizeof(char) * (strlen(a)+1));
 strcpy(p[count] , a);
 count++;
 }
 printf(“ U r entered \n”);
 for(i=0; i<count; i++)
 puts(p[i]);
 }
 If input strings are

India

China

USA…

end

 For the above program, the memory

 creates for the pointer as 

p

P[0] “India”

P[1]

P[2] “China”

P[3]

P[4] “USA”

 “Pakistan”

 “Srilanka”

 C-Family 251 Dynamic Memory Allocation

Command Line Arguments
Just like other functions, main() also receive the arguments and returns a value. Here few questions may

rise! From where does the main() function is called and passed the arguments? The main() function is called

from Operating System's command line by just typing the program name as shown below.

C:\tc\bin\>sum.exe // here “.exe” is optional

(Suppose if our C program’s file name is “sum.c” then its compiled version will be “sum.exe”)

When a program is run, the operating system loads .exe file into memory and invokes the startup function

main(). Here, we can assume the OS is the caller of main() function. Therefore, the arguments can be passed

to the main() by specifying a list of values at the command line as shown below.

C:\tc\bin\>sum 10 20 30
Unlike other functions, the arguments to main() passes in a different manner. They pass as array of string

constants. That means, even if you give an integer values, they pass as strings. In the above case also, the

arguments will be passed as "sum”, "10", "20", "30". (Passes as array of addresses as shown in below

picture).

But main() receives them as two arguments, the first argument is integer, which specifies the count of

arguments which we passed including file-name. The second argument is, an array of addresses containing

strings. Thus main() function should be defined as

 void main(int count , char *a [])

{ ---

 }

Here, 'count' holds the count of arguments whereas 'a[]' holds address of all string constants that are passed

to the program. The size of array is, number of values we passed to it. (This as above figure)

Example1 : this program adds all such integers which we passed through command line as above shown

 Input: c:\tc\bin\> sum 10 20 30 40

Output: sum of numbers = 100

void main(int count, char *a[])

{ int sum=0,i=0;

 for(i=1; i<count; i++)

sum = sum+atoi(a[i]); //atoi() function converts numeric string to integer value

printf("\n sum of numbers = %d", sum);

 }

Example2: The following program takes string as input from command line and displays length.

It also shows an error, if user enters less number of strings.

 Input: C:\tc\bin\>sample C-Family

 Output: length of C-Family = 8

 void main(int count, char *a[])

 { if(count==1)

 { printf(“insufficient arguments”);

 return;

}

prinf(“the length of %s = %d”, a*1+, strlen(a*1+));

 }

a[0] a[1] a[2] a[3]

2020 2030 2050 2070

“sum.exe” “ 10 ” “ 20 ” “ 30 ”

2020 2030 2050 2070

 C-Family 252 structures, unions, enums

User Defined Data Types
The data types can be classified into two types ①predefined types ②user defined types.

Predefined types are also called built-in or primitive types, whereas user types are custom types.

Primitive Data types: these are also called built-in or basic types, for example int, char, float, int*, etc;

these primitive types and their functionalities were already designed and developed in compiler level during

development of C software. Therefore, we can directly use them in programs.

User defined Data types: ‘C’ gives a freedom to the coder to define his own data types according to

requirement in the program. Therefore, these are called user-defined types.

We have 3 types, ①structure ②union ③enumerator.

Generally, it is difficult to handle large collection of data using basic types. Using arrays, we can handle only

collection of homogeneous items of known size. However, to handle collection of heterogeneous items then

user-types are required. For example, consider an employee data containing id, name, address, salary, etc.

Handling such heterogeneous items individually is difficult and leads to complex task. If we group all these

items into single (as one record) then they can be handled easily. For this, fortunately, C is providing a

structures concept.

1) Structures

Structure is a collection-type user-defined data-type, used to pack several different items together as single

item. So we often state that, array is collection of homogenous items, whereas structure is a collection of

heterogeneous data items. Sometimes, the items in a structure can be same type.

The items in a structure are called data-members and we can have as many members as we want.

Syntax to declare a structure

 struct structure-name

 { data_memberl;

 data_member2;

 …

 data_memberN;

 };

For example:

 struct student

 { int idno;

 char name[30];

 int marks1, marks2;

 };

This structure declaration defines or creates a new data-type called “struct student”, using this, we can

create variables and its data can be managed.

This structure declaration works as a blue-print or template of our type and it does not occupy any space in

executable file. Just it gives layout idea to the compiler i.e, about structure-name, data type of each member

and space required for each member. Now using this structure template, we can create variables and its

data can be managed. Here structure-name is the name given to the structure and it follow rules of variable

naming. The structure can be declared in local or global scope, depends upon requirement of program.

struct structure-name variable1, variable2,…,

variableN;

 C-Family 253 structures, unions, enums

Syntax to declare structure variables:

For example:

The memory allocation for the ‘K’ and ‘S’ will be as

Many people says, the declaration of structure works as logical idea like building plan on paper whereas the

variables of structure works as physical space like constructed building. (logical vs physical or plan vs

implementation)

Accessing members in a structure: we have two operators

 1. Selection operator, dot (.) // accessing through structure variable

 2. Indirect selection operator, arrow () // accessing through structure pointer

a) Using selection operator

syntax: struct_variable . member_name

for eg: the expression K.idno accesses the ‘idno’ in K

the expression K.name accesses the ‘name’ in K

the expression K.marks1 accesses the ‘marks1’ in K

printf(“ %d %s %d %d ”, K.idno, K.name, K.marks1, K.marks2);

b) Using indirect selection operator

 if structure type is ‘struct student’, then its pointer type is ‘ struct student* ’

 for example: struct student *p; // ‘p’ is a pointer to a structure

 struct student K;

 p=&K; // making pointer ‘p’ to ‘K’

now the expression ‘*p’ accesses the total memory of ’K’ [so *p == K]

the expression (*p).idno accesses the ‘idno’ in ‘K’

 (*p).idno is equal to K.idno

 (*p).idno is equal to p->idno // this ‘p->idno’ is a short form, this is called: p arrow idno)

 (*p).name or p->name is equal to ‘K.name’

The arrow operator (->) introduced in second version of C language

this is a short-cut operator, used to access the members in a structure through pointer.

Note: the expression (*p).name cannot be taken as *p.name, because, the dot operator(.) has high priority

than pointer operator(*) , here first the compiler tries to evaluate p.name thereby shows an error. Because

‘p’ does not have members of a structure, actually it contained address. The expression (*p).name is valid

expression because it is ‘K.name’

struct student K , S ;
 Data type Variables

 K S
 Member’s name  idno Name marks1 marks2 idno name marks1 marks2

 Bytes occupied  2 30 2 2 2 30 2 2

 K
100 “Lokesh” 45 78

k.idno k.name k.mark1 k.marks2

 P K
2000 100 Lokesh 45 78

 pid pname pmark pmarks2

Remember: (*p).name is equal to p->name , so the (*p) can be taken as p->

 C-Family 254 structures, unions, enums

Initialization VS assignment of structure variables
A) Initialization of structure is same as initialization of array, here all values must be put in pair of braces{}
 syntax: struct variable = {list of structure values};
 example: struct student K={100,"Lokesh",33,44}, S=,101, ”Srihari”,55, 66};

B) Assignment of structure members is same as assigning values to basic data- type variables, for example

 K.idno=100; // filling idno number with 100

 K.name=”Srihari” ; // we can’t assign like this, because ‘name’ is arrays’s pointer

 strcpy(K.name, “Srihari”); // filling name with “Srihari”

 K.m1=66;

 K.m2=77; // filling marks with 66,77

Demo program filling and displaying structure member values

Let student contained values like idno, name, and two subject marks as said in above example and printing

all details. (Here each member assigned with a value instead of initializing the whole structure)

 struct student // this is global declaration of a structure

 { int idno;

 char name[30];

 int m1, m2;

 };

 void main()

 { struct student s;

 s.idno=100; // filling idno number with 100

 strcpy(s.name, “Srihari”); // filling name with “Srihari”

 s.m1=66; s.m2=77; // filling marks with 66,77

 printf("the filled details are:");

 printf("%d %s %d %d “ , s1.id, s1.name, s1.m1, s1.m2);

 }

The following program accepts student details from keyboard and printing on the screen.

 void main()

 { struct student k; //declaration of student variable

 printf("\nEnter student details:"); // scanning details

 printff \n enter idno :");

 scanf("%d", &k.idno);

 printf("enter name :");

 fflush(stdin);

 gets(k.name);

 printf(“enter marks1 & mark2:");

 scanf("%d%d",&k.m1, &k.m2);

 printf("\n ---------------the scanned details are:--------------------------\n");

 printf("%d %s %d %d %d", k.idno, k.name, k.m1, k.m2);

 }

like normal variables, the structure members are scanned individually as built-in type.

The total structure cannot be read as a single value unless a special function is written for it.

K S

100 Lokesh 33 44 101 Srihari 55 66

 C-Family 255 structures, unions, enums

Let us see advantages of structures

taking two student’s data variables with and without structures

 void main()

 { // declaration of two student’s variables without structures

 int idno1 , idno2;

 char name1[30], name2[30];

 int m11, m12, m21, m22;

 }

If we use structures then the code will be

 void main()

 { // declaration of two student’s variables with structures.

 struct student s1,s2;

 }

Filling and displaying student details through functions

Following two functions fill() & show() manipulates the student data.

The fill() function, fills the student details with the data: “100, Lokesh, 45, 78” and show() fn displays it.

The fill() function followed call-by-reference, whereas, show() function followed call-by-value.

 struct student

 { int idno;

 char name[30];
 int m1, m2;
 };
 void main() S
 { struct student s ;
 fill(&s);
 show(s);
 }

void fill(struct student *p)
{ p->idno=100;
 strcpy(p->name, ”Lokesh“);
 p->m1=45;
 p->m2=78;
}
void display(struct student k)
{
 printf(“ %d %s %d %d ”, k.idno, k.name, k.m1, k.m2);
}

The function fill() has followed call-by-reference method,

here the pointer ‘p’ is pointing to structure ‘s’ as shown in

figure. The expressions p->id, p->name, p->m1 accesses the memory of structure ‘s’.

That is, the fill() function indirectly inserts the values into members of ‘s’;

Whereas, the function show() has followed call-by-value method. When it calls, all the members data of ‘s’

are copied into ‘k’, later displayed one by one using ‘k’.

100 Lokesh 45 78

pidno pname pm1 pm2

 K

100 Lokesh 45 78

p.id p.name p.m1 p.m2

This seems to be so easier than the above.

Thus structures provide a great convenience.

p

This is declaration of 2 student’s variables

this seems to be difficult to understand

 C-Family 256 structures, unions, enums

Scanning two dates from KB and finding whether they are equal or not?

 * trying with & without using functions
 ip: 12 9 2010 ip: 12 9 2010
 12 9 2010 13 9 2011
 op: equal op: not equal

 struct Date
 { int d, m, y;
 };
 void main()
 { struct Date a , b;
 int k;
 read(&a); // scan date1 (day, month, year) using read() function.

 read(&b); // scan date2 (day, month, year)

 k=compare(a , b); // compares two dates and returns 1/0

 if(k==1) printf("equal");
 else printf("not equal");
 }
 void read(struct Date *p)
 { printf("enter day month year:");
 scanf("%d%d%d", &p->d, &p->m, &p->y);
 }
 int compare(struct Date p , struct Date q)
 { if(p.d==q.d && p.m==q.m && p.y==q.y)
 return 1;
 else
 return 0;
 }
the read() fn followed call-by-reference, because, the scanned values at read() fn need to be returned to
main() fn, therefore we have to store indirectly through pointers, whereas compare() fn follows call-by-
value, it is just comparing given two dates.

Scanning two times from keyboard and printing addition of them

Let the two times are employee working time in two shifts, later add & print total time worked in two shifts.

 ip: 12 50 58 (shift-1 worked duration : Hours=12, Min=50, Seconds=58)

 2 53 55 (shift-2 worked duration : H=02, M=53, S=55)

 op: 15hr 44min 53sec (total duration worked in two shifts)

 struct Time

 { int h, m, s ;

 };

 void main()

 { struct Time a, b, c;

 a=read(); // this read() fn returns the scanned time (it is opposite to above read() fn)

 b=read()

 c=add(a,b); // add two times like c=a+b

 write(c); // print output time on the screen

 }

 C-Family 257 structures, unions, enums

 struct Time read()

 { struct Time k;

 printf(“enter time :”);

 scanf(“%d%d%d”, &k.h, &k.m, &k.s);

 return k; // returning scanned time(three values)

 }

 struct Time add(struct Time a, struct Time b)

 { long int k;

 struct Time t;

 k=(a.h+b.h)*3600 + (a.m+b.m)*60 + (a.s+b.s);

 t.h=k/3600;

 t.m=(k%3600)/60;

 t.s=(k%3600)%60;

 return t;

 }

 void write(struct Time k)

 { printf(“output time is : %d - %d - %d”, k.h, k.m, k.y);

 }

Above program followed completely call-by-value method, but we can write same program using

call-by-ref, the following example explains it

 void main()

 { struct Time a, b, c;

 read(&a);

 read(&b);

 add(&c, &a, &b);

 write(&c);

 }

 void read(struct Time *p)

 { printf("enter time :");

 scanf("%d%d%d", &p->h, &p->m, &p->s);

 }

 void add(struct Time *t, struct Time *p, struct Time *q)

 { long int k;

 k=(p->h+q->h)*3600 + (p->m+q->m)*60 + (p->s+q->s);

 t->h=k/3600;

 t->m=(k%3600)/60;

 t->s=(k%3600)%60;

 }

 void write(struct Time *p)

 { printf("output time is : %d - %d - %d", p->h, p->m, p->s);

 }

Conclusion: here read() fn should be written in call-by-ref, but add() and write() can be either of two.

if structure size < 20 bytes, then call-by-value is the choice where the members can be easily accessed.

if structure size > 20 bytes, then call-by-ref is the choice, because it is unnecessary creating 2nd copy at called

function for a big size data. Here in this case, for the two functions add() & write(), the call-by-value is the

best, because the size of structure is less than 20 bytes..

 C-Family 258 structures, unions, enums

Scanning two matrices data from keyboard(KB) and printing addition of them

struct matrix
{ int a[10][10]; // array to hold matrix elements

 int r,c; // r, c are order of matrix

};
 void main()
{ struct matrix x, y, z;
 int k;
 accept(&x); // call-by-reference

 accept(&y);
 k=add(&z, x, y); // partly call-by-value and call-by-reference

 if(k==0) printf("\n Matrix cannot be added ");
 else display(z); // call by value

}
void accept(struct matrix *p)
{ int i,j;
 printf("Enter no.of rows and columns :");
 scanf("%d%d", &p->r, &p->c);
 for(i=0; i<p->r; i++)
 { for(j=0; j<p->c; j++)
 { printf("enter value of [%d][%d]:", i, j);
 scanf("%d", &p->a[i][j]);
 }
 }
}
void display(struct matrix z)
 { int i,j;
 for(i=0; i<z.r; i++)
 { for(j=0; j<z.c; j++)
 printf("%d ", z.a[i][j]);
 printf("\n");
 }
}
int add(struct matrix *p, struct matrix x, struct matrix y)
{ int i,j;
 if(x.r != y.r || x.c != y.c)
 return 0; // zero indicates addition failed

 for(i=0; i<x.r; i++)
 for(j=0; j<x.c; j++)
 p-> a[i][j] = x.a[i][j] + y.a[i][j];
 p->r=x.r;
 p->c=x.c;
 return 1; // return ‘1’ indicates addition succeeded

}

 C-Family 259 structures, unions, enums

Array of structures
Array of structures is useful when several instances of details are to be handled in the program.
We can create array of structures just like any normal data types.
Syntax: struct structure-name array-name[size];

For example: struct Person
 { char name[20]; // name of person

 int age // age of person

 };
 struct Person s[3]; // creates array of 3 structure variables.

The array of 3 structures is as follows

s[0] s[1] s[2]

name age name age name age

Like normal arrays, the structure arrays are accessed, here each element s[0], s[1], s[2] is a structure item.
Syntax to access members in the structure array is: array-name[index].member-name

The expression s[0].name  accesses the name in s[0]
The expression s[0].age  accesses the age in s[0]
The expression s[1].name  accesses the name in s[1]
The expression s[1].age  accesses the age in s[1]

Following program explains how to scan & print array of 3 structure values.
 void main()
 { struct Person s[3];
 scan(s); // scan(&s[0])  passing base address of array

 display(s); // display(&s[0]);  passing base address of array

 }
 void scan(struct person p[] or struct person *p)
 { int i;
 for(i=0; i<3; i++)
 { printf(“enter name & age of a person :”);
 gets(&p[i].name); // gets((p+i)->name);

 scanf(“%d”, &p*i+.age); // scanf(“%d”, &(p+i)->age);

 }
 (or) for(i=0; i<3; i++)
 { printf(“enter name & age of a person :”);
 gets(&p->name);

 scanf(“%d”, &p->age);
 p++; // increments by 22, to points to next structure in the array

 }
 }
 void display (struct person p[] or struct person *p)
 { int i;
 for(i=0; i<3; i++)
 { printf(“\n %s %d “, p*i+.name, p*i+.age); //or printf(“\n %s %d “, (p+i)->name, (p+i)->age);

 }
 (or) for(i=0; i<3; i++)
 { printf(“\n %s %d “, p->name, p->age);
 p++; // increments by 22, to points to next structure in the array

 }
 }
above two loops do same job in scan() & display() functions, but second loop little faster than first loop.

 C-Family 260 structures, unions, enums

Scanning N student details and printing with result.

 input: enter no.of students: 3

 enter student idno name mark1 mark2

 101 Srihari 70 80

 102 Narahari 90 90

 103 Murahari 50 50

 output: idno name mark1 mark2 total average

         ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

          101     Srihari       70            80        150      75 

          102    Narahari    90            90        180      90 

          103    Murahari   50            50        100      50 
 

 struct student  

 { int id; 

  char name[30];  
  int m1, m2, total, avg; 
 }; 
 void main() 
 { struct student  s[100]; 
  scan(s, &n);                       // scan( &s[0], &n ); 

  find(s, n);               // find( &s[0], n ); 

  display(s,n);   // display( &s[0], n ); 

 } 
 void scan( struct student  s[] , int  *pn) 
 { int n,i; 
  printf(“enter no.of students :”); 
  scanf(“%d”, &n); 
  for(i=0; i<n; i++) 
  { printf(“enter student idno  name  mark1   marks2:”); 
   scanf(“%d%s%d%d%d”, &s*i+.idno, &s[i].name, &s[i].m1, &s[i].m2); 
  } 
  *pn=n;   // no.of students  

 } 
 void find( struct student  s[] , int n ) 
 { int i; 
  for(i=0; i<n; i++) 
  { s[i].total=s[i].m1+s[i].m2; 
   s[i].avg=s[i].total/2; 
  } 
 } 
 void display(struct student s[] , int n) 
 { int i; 
  printf(“output is : idno     name    marks1    marks2    total   average\n”); 
  printf(“~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n”); 
  for(i=0; i<n; i++) 
   printf(“\n %d   %s  %d   %d   %d   %d”, s*i+.idno,  s*i+.name, s*i+.m1, s*i+.m2,    \ 
    s[i].total, s[i].avg); 
 } 
 
 



         C-Family             261                          structures, unions, enums 

 
 

Adding two polynomials using array of structures 

5x7+14x5+3x2+10x1+18 
15x4+10x3+13x2+7 

The two expressions are stored in array of structures as given below 
 

 

p[0] p[1] p[2] p[3] P[4] 

5 7 14 5 3 2 10 1 18 0 

coeff exp coeff exp coeff exp coeff exp coeff exp 

p[0] p[1] p[2] p[3] 

15 4 10 3 13 2 7 0 

Coeff exp coeff exp coeff exp coeff exp 

 #define maxSize 20   // let maximum size of degree is 20 

 struct  POLY 
 { int  exp; 
  int  coeff; 
 } ; 
 void  readPoly( struct POLY p[] ) 
 { int prev=maxSize+1, i=0; 
  while(1) 
  { printf("\nEnter coefficient (use 0 to exit) :"); 
   scanf("%d", &p[i].coeff ); 
   if(p[i].coeff==0) break; 
   printf("\nEnter exponent: "); 
   scanf("%d",&p[i].exp); 
 // the input exponents must be in sorted order like shown in above equation, otherwise shows input error 

   if( p[i].exp > prev) 
   { printf("input error"); 
    continue;          // go back and scan again 

   } 
   prev=p[i].exp; 
   i++; 
  } 
 } 
 void printPoly(struct POLY p[]) 
 { int i; 
  for(i=0; p[i].coeff!=0; i++) 
   printf("%d^%d + ",  p[i].coeff,  p[i].exp); 
  printf("\n "); 
 } 
 void addPoly( struct POLY p3[], struct POLY p1[], struct POLY p2[]) 
 { int  i=0, j=0, k=0; 
  while (p1[i].coeff!=0 && p2[j].coeff !=0 ) 
  { if( p1[i].exp > p2[j].exp) 
    p3[k++] = p1[i++]; 
   else  if( p1[i].exp < p2[j].exp) 
    p3[k++] = p2[j++]; 
   else 
   { p3[k].exp = p1[i].exp; 
    p3[k++].coeff = p1[i++].coeff + p2[j++].coeff; 
   } 
  } 



         C-Family             262                          structures, unions, enums 

 
 

  while(p1[i].coeff!=0 )  p3[k++] = p1[i++]; 
  while(p2[j].coeff!=0)   p3[k++] = p2[j++]; 
  p3[k].coeff = 0; 
 } 
 void main() 
 { struct POLY  p1[maxSize],  p2[maxSize],  p3[maxSize]; 
  printf("enter polynomial 1:"); 
  readPoly(p1);      // accepting first polynomial 

  printf("enter polynomial 2:"); 
  readPoly(p2);       // accepting second polynomial 

  addPoly(p3,p1,p2); 
  printf("\n The resultant poly after addition is\n"); 
  printPoly(p3); 
 } 
 

More about different declarations of structures 

We can declare structure variables while defining the structure itself. However, if we define a structure in 
global scope then all variables also becomes as global. 
 struct Account  

 { int  accNo;  

  char name[30]; 
  float balance;  
 } a1, a2;                 Here a1, a2  are variable of type “struct Account”; 
 

Above example with Initialization of variables 
 struct BankAccount 
 { int  accNo; 
  char name[30];  
  float balance;  
 } a1={ 101, "James Bond", 2200.45}, a2=,102, "Goshling”,  3400.45}; 
 

Structure name can be ignored while declaration of structure 
 struct  // structure  name omitted  

 { int  accNo; 
  char name[30];  
  float balance;  
 } a1, a2; 
 

In this method, we cannot declare variables of same structure in the rest of the program, because “structure 
name” is not available to refer the structure in the future.  Actually, this type of declaration is used for sub 
categories of data. This is also known as nested structures, for example 
 struct Account  

 { int  accNo; 
  char name[30];  
  float balance;  
  struct    // called nested structure 

  { int  day,month,year; 
  }openDate;  
 }; 
 
 
 



         C-Family             263                          structures, unions, enums 

 
 

Nested structures 
Structure in structure is said to be nested structure, we can nested as many times as we want, complexity 
will not be increased even though nested many times. For example, 
 struct Student 
 { int idno; 
  struct Date 
  {   int d,m,y; 
  } joinDate; 
 }; 
 void main() 
 { struct Student  p; 
  p.idno=10;  
  p.joinDate.d=10;  
  p.joinDate.m=12;  
  p.joinDate.y=2020; 
  ----- 
 } 
 

typedef  
“typdef” is a keyword,used to define new convenient names for existing data types.  
The new-name works as alias-name for existing data types, but we don’t lose the old- name. 
Syntax: typedef   existing-name   new-name; 
 

 typedef  float  RS; 
 typedef  float  DOLLOR; 
 typedef  int*    INTP; 
 

Let us see, how variables can be declared 
 RS   amount1;              equal to:   float  amount1; 
 DOLLOR   amount2;   equal to:   float  amount2; 
 

Here amount1 & amount2 are nothing but float type variables and this is equal to 
 float amount1, amount2; 
 

Similarly, structure types can be declared in two ways. 
 struct  Date 
 { int  d,m,y 
 }; 
 typdef   struct  Date     DATE;   //now DATE is a convenient name of struct Date; 
 

The above structure can also be declared in simple way as  
 typedef  struct  Date 
 { int d,m,y; 
 } DATE;    this DATE not a variable, it is alias-name of struct Date 
  
 
 
 
 
 

P 

Idno joinDate 

d m y 



         C-Family             264                          structures, unions, enums 

 
 

Advantages of a structure 
1. Easy to access member in a structure: 

Using structure variable, it is easy to access each member rather than when are in individual, which gives 

more clarity and easy to handle.  

2. Assignment between structures is possible 

the compiler supports for copying one structure to another structure just like any integer value.   

Here all members in the structure are copied bit by bit. 

 

 struct  Date  x={10, 4, 2000}; 

 struct  Date y; 

 y=x;   // all members of ‘x’ is copied to ‘y’    (  thi is equal to :  y.d=x.d;  y.m=x.m;  y.y=x.y  ) 
 

3. Passing & returning entire structure between functions is possible 

 For example:  display(e1);        // passing all members of structure in single call   
   swap (&e1, &e2);    // swapping members  

3. Alteration of structure is simple 

 Adding new or deleting existing members is simple.  

4. Avoiding misuse of data 

 Accessing members through structure-variable avoids misusing of data. 

5. Reusability 

 we can reuse one structure while defining another new structure. 

6. We can create array of structures 
 
 

Unions 
Union defines the generic data-type instead of specific type, where we can store any type of value such as 
int/float/char/etc. The main purpose of union is to save the memory space, and also gives flexibility in 
coding. Union is also similar to structure but all the members in the union share the common memory area. 
Here space is created for only one member and remaining members share the same space, therefore we can 
store & access only one member at a time. The size of union is equivalent to biggest data member in it.  
Note: this is used while developing customized-packages or frame-works for one language. (Not in student 
level programming)  

               item 
 union myType 

{ char c;  
 int  i; 
 long int l; 
 float f; 
};  
union myType  item; 

 

The above union variable ‘item’ occupies 4bytes of memory. Among 4 members, the first member ‘c’ uses 
only first byte. The second member ‘i’ uses first two-bytes. Similarly remaining f & l uses total 4bytes.   
Here only one item can be stored & retrieved at one moment. 
 
 
 
 
 
 
 

 

Byte1 Byte2 Byte3 Byte4 

    

   c   

           i  

   f/l               



         C-Family             265                          structures, unions, enums 

 
 

Demo program for how data is handled in union variables 
 union  myType  
 { int i, j, k; 
 };  
 void main()   
 { union myType  var; 

var.i=10; 
printf(“\n    i=%d    j=%d   k=%d", var.i, var.j, var.k);  

} 
 Output: i=10 j=10 k=10  
 
In the above program, when ‘var.i’ is assigned a value 10, the other union members ‘var.j’ and ‘var.k’ also 
gain the same value as they are sharing the common memory space. 
 void main()  
 { union myType  var; 

var.i=10; 
var.j=20; 
var.k=30; 
printf(“\n    i=%d    j=%d   k=%d", var.i, var.j, var.k);  

} 
 op: 30   30  30.   Here var.j=20 overwrites the var.i=10,   var.k=30 overwrites var.j=20; 

Let us see one more example 
union  myType 

 { long l; 
  float f; 
 }; 
 void main() 
 { union  myType  var; 
  var.f=200; 
  printf("\n l=%ld  f=%f\n", var.l, var.f); 
  var.l=100;                    // overwrites var.f=200 value    

  printf("\n l=%ld  f=%f\n", var.l, var.f); 
 } 
Output:  l=garbage  f=200.000000 
    l=100        f=garbage 
 

Let us see practical example, the print() function can print all types of data. 

typedef  struct 
{ union 

  {    char  cc; 
   int   ii; 
   float  ff; 
  }value; 
  char valueType; 

}MyType; 
 

 void main() 
{ MyType  var; 

  var.value.cc='A'; 
  var.valueType='c'; 
  print(var); 
  var.value.ii=100; 
  var.valueType='i'; 

Byte1 Byte2 

  

                           i/j/k 



         C-Family             266                          structures, unions, enums 

 
 

  print(var); 
  var.value.ff=300.45; 
  var.valueType='f'; 
  print(var); 

} 
void print(MyType  var) 
{ switch(var.valueType) 

  { case 'c': 
   case 'C': printf("\n%c", var.value.cc);  break; 
   case 'i': 
   case 'I': printf("\n%d", var.value.ii);  break; 
   case 'f': 
   case 'F': printf("\n%.2f", var.value.ff); break; 
  } 
 } 
 

Enumeration 
Enumerator data type is used to symbolize a list of constants with names, so that, it makes the program easy 
to read and modify. Enumerator maps the values to names there by we can handle the values with names. 
 

 enum   enumerator-name { name1=value1, name2=value2, name3=value3, ... nameN=valueN } ; 
  

 Let us see one program: this program displays no.of days in a given month. 
 

 enum month { jan=1, feb=2, mar=3, apr=4,  ….-; 
void main()  
{ int  mon; 

  printf(“enter month number(1-12):");  
  scanf(%d",&mon); 
  switch(mon)  
  { case jan: printf(“ January month has 31 days"); break; 
   case feb: printf(" February month has 28 days"); break; 
   case mar: printf(" March month has 31 days"); break; 
    --- 
  } 
 } 
Here all month names are replaced by its constant value at compile time, so the enumerator set symbols are 
evaluated of above program is 
 void main()  
 { int  mon; 
  printf(“enter month number(1-12):");  
  scanf(“%d",&mon); 
  switch(mon)  
  { case 0: printf(“ January month has 31 days"); break; 
   case 1: printf(" February month has 28 days"); break; 
   case 2: printf(" March month has 31 days"); break; 
   --- 
  } 

}  
 
 
 

 



         C-Family             267                          structures, unions, enums 

 
 

Enumerators with implicit default values 
 enum Colors{ red, green, blue };   //  here red=0, green=1, blue=2 

 enum Boolean{ false, true };        //  false=0, true=1    
At compile time, all these names are automatically assigned with integer values 0, 1, 2, 3 etc.  
In this way, we can specify enumerated set with valid unique names.  
 

Enumerators with explicit user-defined values 
At the time of declaration of enumeration, we can give explicit values to the names and these values can be 
any integers. Even two names can have same value (duplicate values). 
For example 
 enum cityNames { Vijayawada=10, Guntur=20, Vizag=30 }; 
 

 enum cityNames { Vizag=30, Guntur=20, Vijayawada=10 };       // may not be in order 
 

 enum cityNames { Chennai=1, Madras=1, Mumbai=2, Bombay=2 };   // duplicate values allowed 
 

 enum month { jan=1, feb, mar, apr, may, june, july, aug, sept, oct, dec }; 
 

 Here name "jan" assigned with 1 by the programmer, and remaining names are automatically 
 assigned with next succeeding numbers by the compiler. That is feb=2, mar=3, ... etc. 
 

 enum  Set { A=10, B, C=20,  D,  E,  F=30, G, H };    // Here  B=11,  D=21,  E=22,  G=31,  H=32 
 

Ambiguity error 
There is one problem with enumeration, if any variable exist with same name in enumerator set in same 

scope then we get error at compile time.  

For example, 

 enum color { red, green, blue, white, yellow}; 

 int red=0;     // ambiguity error with red, so either one must be removed  

 void main() 

 { int white=100;   // preference is given to local white variable, instead of white in enumeration  

  printf("%d %d %d %d", green, blue, white, yellow}; 

 } 

 output:  0  1  100  4 
 

Enumeration variables 
Using enumerator  name, we can specify variables of its type. This makes the convenient and increases the 
readability of the program. The enumerator variables are nothing but  int-types. For example 
 

 enum  enumerator-name  variable-1 ,variable-2, variable-3, ... ; 
 

 enum Color { Red=15, Green=26, Blue=13, White=5, Yellow=4, Grey=17 }; 
 

 void main() 
 { enum  Color   wallColor, floorColor;          
  wallColor=White; 
  floorColor=Grey; 
             … 
          … 
 } 
 



           C-Family        268                                      Data Files 

 

File handling in C 
In real life applications, some kind of data needs to be accessed more times in present and future purpose 

like bank transactions, business transactions, etc. Therefore such data is kept permanently in the computer, 

so that it can be accessed many times later. 
 

For this purpose, secondary storage devices are used to store the data permanently in the form of files. 

These files often called data files. Thus, data file can be defined as collection of data, stored permanently in 

secondary storage device. Each file is identified by a valid name called file-name. The interaction with files is 

treated as interaction with io devices in the computers. Therefore, all secondary memory devices treated as 

io devices. 
 

Let us consider a menu driven program to automate student marks in a college. Let the marks scanned from 

keyboard are stored permanently in a data file called "marks.dat", later, such marks are processed and 

stored the results in a separate file called "result.dat" or displayed on the screen. This is depending upon the 

requirement of problem.  Following picture explains how our programs interact with files. 

In computer science, the files are classified into 2 types 

1. Data files: for example, pdf files, jpg image files, mp3 sound files, mp4 video files, business data files, 

    and program’s source code files like c, cpp, java files, etc. 

2. Program files: for example, .exe, .com, .dll, etc; Contains machine code instructions(executable code) 

   this chapter deals with data files, the data files are stored in two formats text & binary. 
 

1. Text Format Files:  Here the data is stored in the form of ascii values (string format)  

2. Binary Format Files: here the data is stored as it is in program variables (raw format))    

  

 

 

 

 

Keyboard  Program1  Input file: “marks.dat” 

 
here we input student records  
one by one through keyboard 

 void   main() 
{ 
       ---- 
       ---- 
} 

 Idno   name    marks1  marks2  marks3    

 
 

 100   srihari      98          77         77 
101   srinivas    65         56         47 
102   Laxmi       55          56         67 
103   vanisri      56          67         75 

Input file: “marks.dat”  Program2  Output file:  “result.dat” 

Idno   name    m1  m2  m3  void main()  Idno  total  avg    pass/fail    rank 

100   srihari   98    77    77 
101   srinivas  65   56    47 
102   Laxmi    55   56   67 
103   vanisri   56   67   75 

 { 
      ---- 
      ---- 
} 

 100      252    84       first             1 
101      168    56       second       4 
--- 
--- 

Input file1:   “marks.dat” 

 Program3    Monitor 
Displaying record(s) on the screen.   
 

 void   main() 
{ 
     ---- 
     ---- 
} 
 

 

Input file2:  “result.data” 

  

 Printer 
Printing record(s) on the printer. 
 

 

  



           C-Family        269                                      Data Files 

 

Text Files  
In text files, everything is stored in the form of ascii values, even numeric data is converted into string 

format with its ascii values of each digit and stored in file.  For example, 'k' contained a value 2891, this 

number is stored in text file as 

 

Here 50, 56, 57,49 are ascii values of 2, 8, 9,1 respectively.  Internally each digit ascii code is again stored in 

binary form as above shown (as computer understands only binary values), in this way, the text data is 

stored and retrieved from text files. These files are only suitable for public sharing related files such as 

document files, help files, message files, source code program files, small data files, configuration files, etc. 

In general, these files are handled in two ways, by writing a specific program to manage them, or by using 

ready-made text editors. Using text editor, we can create & modify the text data. We have several text 

editors like notepad, word pad, ms-word, etc.  
 

The value 26 is inserted as end-of-file mark and also the new-line character is stored as "\r\n"(unix format).  

The library functions does this job while writing ‘\n’ to file, whereas while reading back, it is considered as 

only one character (\n).  (We need to worry about this ‘\n’) 

Some people raise a doubt, if file data itself contained 26 like employee age, then how it differentiates with 

the end-of-file 26. Our 26 is stored as ‘2’ and ‘6’ as its ascii values 50 & 54, so no conflict between these two. 

 

Binary files 
In this kind of file organization, the data is stored as it is in program variables. Here no conversion is made 

while storing and reading back unlike text files. Generally, binary files are extensively used for maintaining 

similar type of data like employee records or bank accounts, insurance accounts, etc.  

In binary i/o, as it is of storing & reading back takes place between the RAM & hard disk, therefore binary 

files are faster than text files. At end of text files, the value 26 is inserted as end-of-file-mark, whereas in 

binary files no such value is inserted, where end-of-file mark is known by the file-size. 
 

In case of binary files, we cannot manipulate the data using text editors. For example, take student structure 

idno|name|marksint|char(30)|int. if this data dumped as it is into file, then it has to be read back as it is. 

(2byte at a time for idno, 30byte at a time for name,..) So, text editors unaware of this user-defined 

structure, hence we cannot handle binary files using text-editors.(text editors are designed to read/write the 

data only in the form of ascii values)  

There should be separate software needed to handle binary files. For example ‘pdf’ file is a binary format file 

and cannot be opened in text editor, a special software like Adobe-Reader is used. Similarly, jpg files, image 

files, sound files, movie files are managed using special software.  
 

In C, files can be handled in two ways, 1. High Level file handling, 2. Low Level file handling. 
 

In high level file handling, there are plenty of library functions with file streaming is available, here C 

provides more support like reading/writing of text/binary data from file, converting numeric to text, text to 

numeric, interaction with printer, random file organization, checking end-of –file pointer, etc. So it is easy to 

handle files in high level organization, but in low level, there is no library functions support, here we need to 

write the code from zero level.  This low level is used in hardware industries for chip level programming to 

develop customized softwares (packages), drivers, utilities. Etc. 

 

 

2891  ‘2’ ‘8’ ‘9’ ‘1’   50 56 57 49  00110010 00111000 00111001 00110001 



           C-Family        270                                      Data Files 

 

File Streaming or File Buffering: 
The total hard disk space is divided into several blocks, where each block size 1024/2048 bytes. This is not 

fixed size and it may vary. Our files content are stored in these blocks of hard disk; if file size is 3000 bytes 

then it takes two or more blocks.  We can’t do any insert/delete/modify operations on file data when it is in 

the hard disk, because, the hard disk supports only block by block reading or writing. So first we dump the 

file data from hard disk to RAM and then we do respective operations, later we store back updated data to 

disk. RAM supports byte-by-byte read/write operations thereby we can do any operations when data is in 

the RAM. 
  

When we open an existing file, the total file contents would not be dumped into RAM, only the first block 

dumped into RAM and then file pointer set to it, the remaining blocks are loaded one by one when file 

pointer moves advance.  File pointer is a pointer used to read/write file contents. When a file pointer moves 

end of first block, the second block loads into same memory (1st block replaces by 2nd block), in this way files 

data loads into RAM and operated, this process is called file-streaming and managed with help of operating 

system. For random file organizations, the blocks are loaded & replaced randomly as per movement of file 

pointer. OS provides this file streaming facility to move the file-data from disk-to-RAM and RAM-to-disk. 

Stream = array of bytes memory + read() fn + write() fn + open() fn + close() fn + other functions. 

This array of bytes memory is also called buffer or stream-memory. The C library functions interact with this 

OS stream functions, we don’t need to bother about how to manage file-streaming. 
 

High-level file IO 
Operations on files are mainly three 

 1. Opening a file 

 2. Applying read/write/modify operations on file data 

 3. Closing a file 

Opening a file: The function fopen() is used to open a file, when we open a file, the file contents are 

dumped from hard-disk to RAM and then file pointer set to it.  The function proto-type is 

   FILE*   fopen(char  *fileName,  char  *openMode);   

The first argument is the name of file which we want to open, and second argument is opening mode. 

For example: FILE *fp;   // pointer to FILE structure   

   fp=fopen("marks.dat" , "rt"); // r: read-mode,  t: text-file 

when a file is opened in the RAM then its memory picture as given below structure 

 

 

Here FILE is a predefined structure, defined in “stdio.h” file.  This structure holds extra information about 

file-name, open-mode, file-type(binary/text), buffer-size(block-size), pointer to file data, pointer to current 

read/write byte, etc. This FILE structure is used for file streaming as said above. 

The fopen() function  first creates a memory for FILE structure and file-data-buffer (follows dynamic memory 

allocation system), later loads file contents from disk to this memory. Finally returns this FILE structure 

address (as shown above). If unable to open a file then it returns NULL. 

 

Pointer  
to file 

 

  this FILE structure holds file stream data  
File 

 name 
Pointer to  
file data block 

Pointer to current 
read/write  record 

Open mode  
(read/write) 

File type  
(text/binary) 

Block  
reference 

Error  
code 

 

       File Data (buffer of block) 

  

Record1 Record2 Record3 Record4 Record 5 Record 6 … 



           C-Family        271                                      Data Files 

 

File open modes: 

  r  read mode: Opens an existing file for reading. (We cannot write/modify existing data). 

     If file not found while opening, then fopen() returns NULL. 

  w  write mode: Creates a new file for writing, if file already exists with same name, its content will  

       be over written. (old data erased) 

  a  append mode: Opens an existing file for adding new data at the end. If file does not exist with  

  that name, then it will create a new empty file and adds the data to it.  

  r+   allows all operations: Opens an existing file for updating, it allows all operations like reading ,  

  writing, modifying. If file not found then it returns NULL.  

  w+  write + modify: Creates a new file for writing. If file already exist with same name then its  

  contents are erased. if once new data is written to file then “w” mode does not allows to go  

  back and modify it, but “w+” allows it. 

  a+  append + modify: Appends new data and also allows to modify new data (not old data) 

   we can append new contents at the end of file, as well as we can read-back/modify the just  

  newly written data. If file not exist then opens new file for adding. 

  b/t   (b for Binary file/ t for Text file): To specify that a given file be a text or binary file. 

 

Closing a file: The function 'fclose()' closes an already opened file. After completion of our task on file, 

it must be closed. This operation involves in updating file contents on disk (saving back to disk) and also 

releases buffer & FILE structure’s space in the RAM. The syntax is  
 

int fclose(FILE  *filePointer);    //  It returns zero, if successfully closed a file, otherwise returns -1.  
 

The I/O functions on files 

fprintf(): it works same as printf(), instead of writing data one the screen, it writes to file 

fscanf(): it works same as scanf(), instead of reading data from keyboard, it reads from file. 

These two functions are specialized to handle text files. 

Using these functions, we can also perform formatted input/output on text files.   

Formatted means, writing data using io flags such as  %d    %5d    %-5d   %.2f   %s    %30s  etc; 
 

fread(), fwrite(): These are specialized for binary files reading/writing data. Of course, we can also use for 

text files, but formatted input/output does not support. 

EOF: it is a macro, represents end of file mark for the text files. (EOF value is equal to -1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



           C-Family        272                                      Data Files 

 

Scanning integers from keyboard and writing to a file 

Scans input values one by one from keyboard until last input is zero, writes each scanned value into disk. 

 

 

 

 

 #include<stdio.h> 
 void main() 
 { FILE *fp;         // pointer to file 

  int n; 
  fp=fopen("sample.txt", "wt");             // w=write mode, t=text file. 

  if( fp==NULL ) 
  {       printf("file not opened");  return; 
  } 
  while(1) 
  {       printf(“ enter a value :”); 
          scanf(“%d“ , &n); 
          if( n==0) break; 
          fprintf( fp , “%d\n“,  n );     //  writes ‘n‘ to file 

   }  

   fclose( fp ); // saving file contents on disk 

  } 
 

Reading integers from a file  

This is opposite to above program, reading integer from file and showing on the screen. 
 #include<stdio.h> 
 void main() 
 { FILE *fp;   int n , k; 
  fp=fopen("sample.txt", "rt"); 
  if(fp==NULL) 
  {       printf("file not opened");  return; 
  } 
  while(1) 
  {       k=fscanf(fp, "%d", &n);          // reading an integer from file, fscanf() returns -1  if  EOF reached 

          if(k==-1 or k==EOF) break;    // stopped when end of file is reached, EOF value is -1 

          printf("%d ", n);       // displaying on the screen 

  } 
  fclose(fp);   // will not be saved on disk, because opened in read-only mode(no updations),  

 }         so only clears from RAM. 

  
 
 
 
 
 
 
 
 
 
 
 
 

Input from keyboard  output file ”sample.txt” 
 
20 30  40  45  56 23  34  0 ⤶ 

 

  
20 30  40  45  56 23  34  



           C-Family        273                                      Data Files 

 

Above program in binary i/o format  

 #include<stdio.h> 
 void main() 
 { writeToFile(); 
  readBackFromFileAndPrint(); 
 } 
 void writeToFile() 
 { FILE *fp;    
  int n; 
  fp=fopen("sample.dat", "wb");   // w=write-mode ,  b=binary-file 
  if(fp==NULL) 
  { printf(“file not opened”); return; 
  } 
  while(1) 
  {       printf(“ enter a value :”); 
          scanf(“%d“ , &n); 
          if( n==0) break; 
          fwrite( &n, sizeof(int), 1, fp ); // for binary files, use only fwrite(), fread() 

  } 
  fclose(fp);        // saves file contents on disk 

 } 
 void readBackFromFileAndPrint() 
 {   int k , n;   FILE *fp; 
  fp=fopen("sample.dat", "rb"); 
  if(fp==NULL) 
  { printf(“file not opened”); return; 
  } 
  while(1) 
  { k=fread(&n, sizeof(n), 1, fp); 
             if(k<=0) break;               //  fread() returns 0 or -1  when end of file is reached 

        printf("%d  ", n ); // printing integer on screen which has read from file 

  } 
  fclose(fp); // will not be saved on disk, because opened in read-only mode, only clears from RAM. 

 } 
 

fwrite() syntax:   fwrite( &varaible,  sizeof( variable),  no.of  variable items,   file-pointer )  
 &variable   this gives address of variable where the data is exist  
      sizeof(variable)   this gives size of data to be written to file from given variable address . 
      no.of variable items   in case array of items exist.  
      file-pointer  refers pointer to file. 
 
fread() syntax:  fread( &varaible,  sizeof( variable),  no.of  variable items,   file-pointer )  
 &variable   this gives address of variable where the data to be inserted  
      sizeof(variable)   this gives size of data to be read from a given file. 
      no.of variable items   in case array of items exist.  
      file-pointer  refers pointer to file. 
 
 
 
 
 
 
 
 



           C-Family        274                                      Data Files 

 

Copying odd numbers from one file to another file 

Let our text file “input.txt” contained some even & odd numbers, now read numbers one by one from file 

and copy only odd numbers into another file called “output.txt”. 

 

 

  

 

 void main() 
 { FILE *fs, *ft;    int n, k; 
  char sName[30], dName[30]; 
  printf(“enter source & destination file names :”); 
  gets(sName);    gets(dName); 
    fs=fopen(sName,”rt”); 
  ft=fopen(dName,”wt”); 
  if( fs==NULL || ft==NULL) 
  { printf(“file(s) not opened”); return; 
  } 
  while(1) 
  { k=fscanf(fp,”%d”, &n); 
   if(k<=0) break; 
   if(n%2==1)   // if odd number then write to file 

         fprintf(fp, “%d space“, n); 
  } 
  fclose(fs);  fclose(ft);  
 }  
 

Copying one file content to another file (file can be binary or text) 

Note: the binary file organization works for both text/binary format files 

this program reads byte by byte from source file and writes to target file, to store byte values, the suitable  

data type is char.  

  void main() 

  { FILE *fs, *ft;  char ch; 

   char sName[30], dName[30]; 

   printf(“enter source & destination file names :”); 

   gets(sName); gets(dName); 

     fs=fopen( sName , ”rb”); 

     ft=fopen( dName , ”wb”); 

   if( fs==NULL || ft==NULL) { printf(“files not opened”); return; } 

   while(1) 

   { k=fread( &ch, sizeof(ch), 1, fs ); 

    if(k<=0) break; 

    fwrite( &ch, sizeof(ch), 1, ft ); 

   } 

   fclose(fs);  fclose(ft);  

  } 

 

 

 

file name: “input.txt”  File name:”output.txt” 

12  17  20  13  29  30  
32  35  40  43  27  20  
21   29  31  39  11  12 
10  8  2  3  

     17   13   29   35   43  27 
21   29   31   39   11  3 



           C-Family        275                                      Data Files 

 

More file IO functions  
fputc(): It is used to write single character to a file. It takes two arguments, a character which is to be  

   written, and a pointer of FILE structure. Syntax:  int fputc(character, FILE pointer); 

fgetc(): It is used to read single character from a file and returns ASCII value of it. ch=fgetc( file pointer );   

fputs(): Writes a string to file 

fgets(): Reads a string from file 

ftell(): returns current read/write position of the file pointer. 

fseek(): moves the file pointer, for example 

fseek(fp, 10, SEEK_ CUR): moves file pointer 10bytes forward from current position. 

fseek(fp, -10, SEEK_ CUR): moves file pointer 10bytes backward from current position. 

fseek(filePointer, 0, SEEK_END): moves the file pointer to end of file. 

fseek(filePointer, -100, SEEK_END): moves the file pointer 100 bytes back from end position. 

fseek(fp, 0, SEEK_SET): moves file pointer to beginning of file. SEEK_SET defines beginning of file  

fseek(fp, 100, SEEK_SET): moves file pointer to 100bytes forward from beginning of file.  

 SEEK_END is a macro defines the end-of-file. Value is equal to 2. 

 SEEK_SET is a macro defines the begging-of-file. Value is equal to 0. 

 SEEK_CUR is a macro defines the current-position of file. Value is equal to 1. 

EOF: it is a macro, represents end of file mark for the text files. (EOF value is equal to 26) 

feof(): It is used to check whether a given file has reached the End Of File mark or not.  

rename():changes the name of an existing file.  syntax: rename(“oldName”, “newName”); 

remove():deletes a file from disk. syntax:  remove(“fileName”); 

filelength(): it gives length of file (the number of bytes occupied by the file) 

Writing scanned text to a file 

This program accepts a text (char by char) from keyboard and writes into a file called "sample.txt".  

The written contents of file can be seen using any text editor like notepad. 

 #include<stdio.h> // to include FILE structure and its IO functions. 

 void main()  

 { char ch;  FILE *fp;  

  fp=fopen("sample.txt","wt");   // opening text file in write mode 

  if(fp==NULL)    

  { printf(“unable to open the file ");  return; 

  } 

  printf("\n enter text (at end of input type F6) :”); 

  while(1)  

  { ch=getchar();  or scanf(“%c”, &ch)       //accepting char by char (text) from Keyboard 

   if(ch==EOF) break;     // EOF is end of file mark, when F6 pressed 

   fputc(ch,fp);  or fprintf(fp, “%c”, ch);  // writing single char to file 

  } 

  fclose(fp);   // storing (saving) file contents into disk 

 } 

 



           C-Family        276                                      Data Files 

 

 

 

 

 

  

 

 

 

 

Counting upper, lower, digits and others in a given file 

This program counts number of upper case alphabets, lower case alphabets, digits, words and lines in a 

given text file. It reads char by char from a given file and checks the each character and counts. 

 #include <ctype.h> 

 #include<stdio.h> 

 void main() 

 { FILE *fp; 

       int upperCount,lowerCount, digitCount, lineCount,wordCount; 

  char fileName[30], ch; 

  puts("Enter the file name:"); 

  gets(fileName); 

  fp=fopen(fileName,"rt"); 

  if(fp== NULL) 

  { printf("file not found"); 

   exit(0); 

  } 

  upperCount=lowerCount=digitCount=lineCount=wordCount=0; 

  while(1) 

  { ch=fgetc(fp);    // reading single char from file 

   if(ch==EOF) break; //  EOF   end of file indicator 

   if( isupper(ch) ) upperCount++; 

   else if( islower(ch) ) lowerCount++; 

   else if( isdigit(ch) ) digitCount++; 

   else if(ch==' ') wordCount++; 

   else if(ch=='\n') 

   { wordCount++; 

    lineCount++; 

   } 

  } 

  fclose(fp); 

  printf("lower count = %d", lowerCount); 

  printf("upper count = %d", upperCount); 

  printf("digits count = %d", digitCount); 

  printf("words count = %d", wordCount); 

  printf(" lines count = %d",  lineCount); 

 } 

 

 

Output: 

File name: “sample.txt” 

hello  

how are you  

how do you do 

fine  

thanks 

Input:  

            hello ⤶  

      how are you ⤶  

      how do you do ⤶  

      fine ⤶  

      thanks ⤶  

 ^Z   (press f6) (^Z is equal to EOF 



           C-Family        277                                      Data Files 

 

Handling student details (binary files) 

This program accepts student marks from keyboard and inserts each record into a file called “marks.dat”, 

later read back and process the result and shows on the screen. 

Note: this is demo program, for binary file IO system; here fread() & fwrite() functions are used 

input: enter idno (0 to stop): 101 
                        enter name:  Srihari 
     enter marks1 , marks2:  66 77 
 

       enter idno (0 to stop): 102 
                        enter name:  Narahari 
     enter marks1 , marks2:  88 99 
ouput:  
   idno        name            mark1      mark2      result 
           -------------------------------------------------------------------- 
               100         Srihari             70             80            pass  

   101         Narahari          80            20             fail 

 #include<stdio.h> 

 struct Student 

     {   int  idno,m1,m2; 
    char name[30]; 
     }; 
     void main() 
     { acceptMarks(); 
 processAndShow(); 
     } 
     void acceptMarks() 
      { FILE *fp; 
 struct Student st; 
 fp=fopen("marks.dat","wb"); 
 while(1) 
 { printf("\n enter idno (0 to stop):"); 
  scanf("%d",&st.idno); 
  if( st.idno==0)  break;  // 0 is end of input 

  printf("enter name:"); 
  fflush(stdin); 
  gets(st.name); 
  printf("enter marks1 , marks2:"); 
  scanf("%d%d",&st.m1, &st.m2); 
  fwrite( &st, sizeof(st), 1, fp);    // for total, average garbage will be stored 

 } 
 fclose(fp); 
 } 
void processAndShow() 
{ FILE *fp; 
 struct Student st; 
 int k, total, avg; 
 char *result; 
 fp=fopen("marks.dat","rb"); 
 printf("\n%6s   %-20s %5s %5s   %-20s", "idno", "name", "mark1", "mark2", "result"); 
 printf("\n---------------------------------------------------------------------------"); 
 while(1) 
 { k=fread( &st, sizeof(st), 1,fp); 
  if(k<=0) break;   // end of file reached then stop it. 



           C-Family        278                                      Data Files 

 

  total=(st.m1+st.m2); 
  avg=total/40; 
  if( st.m1<35 || st.m2<35 ) 
   result="Failed"; 
  else if(avg>=60) 
   result="First class"; 
  else if(avg>=50) 
   result="Second class"; 
  else  result="Third class"; 
  printf("\n  %-6d %-20s %5d %5d   %-20s", st.idno, st.name, st.m1, st.m2, result); 
 } 
 fclose(fp); 
       } 
 

A menu driven program to handle employee records (mini project work) 

A menu driven program to handle employee records 
This program manages employee information: it supports adding newly joined employee details, deleting 
relieving employee record, modifying address or any other information of employee, printing particulars.  
Employee details are stored in a separate file called "emp.dat".  
in this menu run program, the user can select his choice of operation. 
                Menu Run 
 -------------------------------- 
 1. Adding new employee 
 2. Deleting employee record  
 3. Modifying existing record 
 4. Printing employee details 
 0. Exit 
       Enter choice [1,2,3,4,0]: 
 #include<stdio.h> 
 typedef  struct   // structure of an employee 

  { int  empNo; 
  char name[30]; 
  float salary; 
 }EMP; 
 void append(); void modify(); void delete(); void print(); // fn proto-types 

 void main() 
 { int choice; 
  while(1)  // loop to display menu continuously 

  {    printf("\n\n============================================================="); 
       printf("\n 1.append \n 2.delete \n 3.modify\n 4 print \n 0.exit"); 
       printf("\n   Enter choice [1,2,3,4,0]:"); 
   scanf("%d", &choice); 
   switch(choice) 
   { case 1:  append(); break; 
    case 2:  delete(); break; 
    case 3:  modify(); break; 
    case 4:  print(); break; 
    case 0:  exit(0); 
   } 
  } 
 } 
// ------------------------------------------------------------------------------------------------------------------------ 
 



           C-Family        279                                      Data Files 

 

//  this append() function appends a record at end of file 
 void append() 
 { FILE *fp;   EMP e; 
  fp=fopen("emp.dat", "ab");   // ‘a’ for append, ‘b’ for binary-file 

  if(fp==NULL) 
  { printf("\nUnable to open emp.dat file"); 
   return; 
  } 
  printf("\n enter employee no:"); 
  scanf("%d",&e.empNo); 
  printf("Enter employee name:"); 
  fflush(stdin); 
  gets(e.name); 
  printf("enter salary :"); 
  scanf("%f",&e.salary); 
  fwrite(&e,sizeof(e),1,fp); 
  fclose(fp); 
  printf("\n successfully record added"); 
 } 
//  -------------------------------------------------------------------------------------------------------------------------- 
//  delete() function.  Direct deletion of record is not possible from a file, alternative is, copy all records 
// into another temp file except deleting record; later temp file will be renamed with the original file name. 
 void delete() 
 { FILE *fp,*ft;   EMP  e; 
  int eno, found=0, k; 
  fp=fopen("emp.dat", "rb"); 
  ft=fopen("temp.dat", "wb"); 
  if(fp==NULL || ft==NULL ) 
  { printf("\nunable to open file"); 
   fclose(fp);  fclose(ft);  return; 
  } 
  printf("\nenter employee number to delete record :"); 
  scanf("%d",&eno); 
  while(1) 
  { k=fread(&e,sizeof(e),1,fp); 
   if(k==0)break; 
   if(eno==e.empNo) 
    found=1; // record is found 
   else 
    fwrite(&e,sizeof(e), 1 ,ft); 
  } 
  if(found==1) printf("\nRecord deleted success fully"); 
  else  printf("\nRecord Not found"); 
  fclose(fp); fclose(ft);   
  remove("emp.dat");                  // deletes old-file from disk 

  rename("temp.dat","emp.dat"); 
 } 
//  -------------------------------------------------------------------------------------------------------------------------------------- 
//  Modifying data in a record. First, it searches for modifying record in a file, if record is not found then 
// displays error message & returns. If found, then old-salary overwrites by new-salary of a record   
void modify() 
{ EMP e; 
 int found=0 , eno, k; 
 long int pos; 



           C-Family        280                                      Data Files 

 

 FILE *fp; 
 fp=fopen("emp.dat","rb+"); 
 if(fp==NULL) 
 {      printf("\nfile not found "); 
        exit(0); 
 } 
 printf("\n enter employee number:"); 
 scanf("%d",&eno); 
 while(1) 
 { k=fread(&e,sizeof(e),1,fp); 
  if(k==0) break; 
  if(eno==e.empNo) 
  { found=1; // record is found 

   break; 
  } 
 } 
 if(found==0) {  printf("\n Record not found"); return; } 
 pos=ftell(fp);            // this function returns the current position of read/write pointer 

 pos=pos-sizeof(e);                      
 fseek(fp, pos, SEEK_SET); // move the file pointer one position back 

 //  after reading our search record , the file pointer moves to next-record, so to replace our record data, we have to move  
 //  the file pointer back. The above code moves like that. 

 printf("old salary : %.2f", e.salary); 
         printf("enter new salary:"); 
 scanf("%f", &e.salary); 
 fwrite(&e,sizeof(e), 1 ,fp);  // overwriting old record 

         fclose(fp); 
         printf("\n address suceessfully modified"); 
    } 
//  -------------------------------------------------------------------------------------------------------------------------------------- 
// print function, prints all records 
 void print() 
 { EMP e;  int k, count=0;     
  FILE *fp; 
  fp=fopen("emp.dat", "rb"); 
  if(fp==NULL) 
  { printf("\nfile not found "); 
   return; 
  } 
  while(1) 
  { k=fread(&e,sizeof(e), 1,fp); 
   if(k==0) break; 
              printf("\n employee number: %d",e.empNo); 
              printf("\n employee name : %s",e.name); 
              printf("\n Salary: %.2f", e.salary); 
              count++; 
              printf("\n--------------------------------"); 
  } 
  printf("\n(%d) records found", count); 
          fclose(fp); 
 } 
 

This book softcopy is available in pdfhost.io website, to download the file, search through keyword ‘cfamily’. 

This pdf file(s) designed for 2-sided print-copy (Xerox hard copy).    


